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Preface 

"His lectures were a great experience, for experimental as well as theoretical 

physicists. In addition to a superb literary style, he brought to them a degree 

of sophistication in physics previously unknown in the United States." So 

wrote Hans Bethe of Robert Oppenheimer's qualities as a teacher during 

the decade prior to World War II. It was an exciting decade for physics, 

and Oppenheimer, holding a joint appointment at the University of Cali­

fornia and the California Institute of Technology, was attracting a group 

of students destined to contribute to the great transformation which would 

soon propel American physics into the front rank. One of these students, 

Robert Serber, who followed Oppenheimer on his annual trek between 

Berkeley and Pasadena, bas said of one of his courses: "It was an in­

spirational as well as an educational achievement. He transmitted to his 

students a feeling of the beauty of the logical structure of physics and an 

excitement about the development of physics. Almost everyone listened to 

the course more than once." 

Perhaps classical electrodynamics has by now lost some of the excitement 
it had in the thirties, when it was still viewed as the primary foundation 

and model for quantum electrodynamics. We have become so sophisticated 

nowadays that the theorists among us, when we think of electrodynamics, 

think of threshold theorems, off-shell amplitudes and dispersion relations­

almost never of little radiating balls of mass and charge. And yet classical 

electrodynamics has a standard place in our curriculum. The lecture notes 

which comprise this book have been reproduced in ditto-copy form three 

times since they were first written down: in Berkeley in 1939, then at the 

University of Chicago in 1947 and again at the University of Colorado in 

1949. I am grateful to Dr. Richard Akerib for providing a personal copy 

of the latter set from which the present, and first published edition, has 

been prepared. I wish also to thank Mrs. Oppenheimer for granting the 

publisher permission to bring these lectures to a wider audience. 

Aside from some updatings of notation and corrections of obvious slips 

of the pen, very little bas been changed from the original notes. I have 

improved the English in a number of places and rewritten occasional 

vii 



Vl\1 PREFACE 

paragraphs for clarity. In chapter 1, sections 9 and 1 0, I have simplified 
some derivations. There are also a few editorial remarks scattered through the 
book. Only rarely does the text itself sound dated, such as at the end of the 
paragraph preceding Eq. (1 1 . 8) and the brief excursion into angle-and­
action-variable perturbation theory in chapter 1 ,  section 1 7. I have let such 
vignettes stand unimpaired. 

The material is as relevant now as when the lectures were first given. 
Problems are approached in a direct manner and the transition from theory 
to application occurs quickly and repeatedly. Basic difficulties are not 
avoided but are presented in a manner which is both rational and un­
complicated. The viewpoint is by no means confined to the purely classical 
theory. Quantum ideas are introduced at every relevant occasion, and 
relativity theory is developed in a delightfully revealing way.  The prereq­
uisites for reading these notes are modest. The student should have had a 
course in electromagnetic theory and some acquaintance with elementary 
quantum theory. This will suffice to enable him to share some of the same 
joys as an earlier generation of students. 

BRYCE S. DE WITT 
University of North Carolina 
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CHAPTER I 

Maxwell's Theory 

1 INTRODUCTION: DEFINITION OF THE FIELDS 

Electrodynamics is a field theory. It deals with the electric and magnetic 
fields, supposed measurable at any point P(x, y, z) in  space and at 
any time, t. We shall be concerned with fields measured in the 
absence of dielectrics and diamagnetics : the electric field E(x, y, z, t), the 
magnetic field H(x, y, z, t): When we have to discuss dielectric effects we 
shall try to understand them atomically; that is ,  in terms of the fields due 
to the charges in the medium. Then we shall have to distinguish, by the 
type of measurement involved , D from E, B from H. These are all vectors 
and functions of x, y, z, and t. 

Definition of the fields: We take a test body, of volume V, uniform 
charge density(!, and mass M. Let it be very nearly at rest, and let it occupy 
the volume V about P for a time r about t. The electric field, averaged 
over V and r is then defined by 

p(t + r) - p(t) = VerE 
where p = Mv is the momentum, v the velocity of the test body. If p i s  
to be measurable and v so small that magnetic forces can be neglected, M 
must be large . The precautions to make the measurement valid are: 

1 )  v -+ 0 no magnetic forces .  

2) r -+ O } to the t ime and point at which E was measured. 
3 ) v -+  0 

4) (! V -+ 0 to eliminate electromagnetic self-action effects of the test 
body. 

In electron theory, e V cannot be less than the electronic charge e. In 

quantum theory p cannot be measured without sacrificing the knowledge 
of the test body's position. When atomic and quantum effects are important, 

1 Oppenheimer (4013) 1 



2 LECTURES ON ELECTRODYNAMICS 

difficulties in definition of the field arise. The quantum limitations are well 
understood and form the physical basis of the breakdown of classical 

electromagnetic theory. 

The analogous definition of H would use a distribution µ of magnetic 

poles: 
p(t + T) - p(t) = Vµ-rH 

and the same precautions as for E. We have no single poles, but we use 

the ends of long needles. The H so measured gives a force on a moving 

charge e, the Lorentz law of force, 

F = - = e E + - (v x H) dp { 1 } 
dt c 

We can use this to extend the definition of H. 

2 MAXWELL'S EQUATIONS 

In the Gaussian system of units, Maxwell 's equations are 

V · E = 4ne 

V · H = 0 

VxE= 
1 oH - - --
c at 

v H 1 oE 4 . 
x = --- + nJ 

c at 

(2. 1) 

(2.2) 

(2.3) 

(2.4) 

where e and j are the charge and current densities. The first three equations 

are the expressions of experimental facts in differential form. (2.1) is 

Coulomb's law for electric charges; (2.2) is Coulomb's law for magnetic 

poles, supplemented by the fact that no free magnetic poles exist in nature; 

(2.3) is Faraday's law of induction . (2.4) is a generalization of Ampere's 

law 

V x H = 4nj 

1 8E 
by the addition of the term- -8 , which is  called Maxwell 's  displacement 

c f 
current. Maxwell added this term since otherwise the equation leads to 

v. j = 0 
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and this i s  not true for non-steady flow of current . When the term is  in­

cluded, we get 

and if we write 

v · j = _ _!_� 
c ar 

. I 
J = -ve 

c 

we have the usual equation of continuity 

V · (e v) + 012 = 0 ar 

(2.5) 

Maxwell's additional term is also necessary to have E and H satisfy the 

wave equation in free space. If the term is not included, we get 

LlE = 0 (Ll = V · V) 
LlH = 0 

which do not admit plane wave solutions and hence contradict experience. 

EXERCISE 1 Describe an experiment whereby the existence of Maxwell's displacement 

current is verified directly. 

EXERCISE 2 Show that the equation 

V x H= 4nj 

follows directly from the equivalence between a current circuit and a suitable magnetic 

shell. 

3 SOLUTION OF THE EQUATIONS IN FREE SPACE 

At first sight it may be thought that from Maxwell 's  equations given above 

and from the Lorentz force 

f = eE + j x H (3.1) 

(f = force density) we could compute the charge and current distribution fl, 
j and the fields E and H from given initial conditions . But besides the 

mathematical difficulty, there is the yet unsolved problem of how the self­

field of a charge affects its motion. Hence, we have to limit ourselves to 

the less ambitious problem of calculating the field produced by a given 

charge and current distribution, and conversely the charge and current 

from a given field. In this way we may approach the general solution by 

successive approximation. 
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First we shall consider the solution of Maxwell's equations in free space. 

Putting e = 0, and j = 0, we have 

V· E  = 0 

V· H = 0 1 oH V x E = ---­

c at 

1 oE 
V x H = - -­

c at 

Taking the curl of the last two equations and noting that 

Vx Vx =VV· -L1 
we get 

by using the first two .equations. Here 

1 a2 
D=-- -- +L1 

c2 ot2 

and is known as the d'Alembertian operator. 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3 . 8) 

(3.9) 

Suppose each component of E, H is a function of z and t only. Then 1 o2E, 
-

o2E, = O
· 

c2 ot2 oz2 ' 

1 a2n1 a2H; _ 0 
- ------
c2 ot2 oz2 

The solutions of these equations are 

(i = x,y, z) 

E1 = f,(z + ct) + F1(z - ct) 
H, = g,(z + ct) + G1(z - ct) 

(3.10) 

(3 .1 1 )  

(3.12) 

(3.13) 

In order that they satisfy Maxwell's equation, we have from (3.2) and (3.3) 

oEZ = o· Oz ' 
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and hence from (3.12) and (3.13), £z = 0, Hz = 0, apart from a constant 

field which is of no interest here, which shows that electromagnetic waves 

are transverse waves. In free space the direction of the electric and magnetic 

vectors is always perpendicular to the direction of propagation of the wave. 

Let E be along the x-axis; then £z = Ey = 0. From (3.4) and (3 .5) we get 

oHv I o£x 
--- = ---

oz c at 

and Bx = Hz = 0. Thus E, H, z, where z is the direction of propagation, 

form a right-handed orthogonal system of vectors, and we have 

Ex =f(z +ct)+ F(z - ct) 

Hy= -f(z +ct)+ F(z - ct) 

as solutions of Maxwell's equations. 

Let us consider the special case of monochromatic waves. Then 

f(z + ct) = R{Aetk<z+ct>} 
where R{} denotes the real part. If n is a unit vector in the direction of 

propagation, then 
2nv 2n k =kn =-- n = - n 
c Ji. 

is called the propagation vector. Let us introduce unit vectors E1, E2 so that 

E1, E2, n form a right-handed system of orthogonal unit vectors. Then for 
a monochromatic wave propagating in the direction n, 

E = El{aleHk·n - rot)+ a1e-Hk·n - rot)} 
H = E2{b2ef<k·n - rot) + lJ2e-Hk·n - rot)} 

Here we have written w =kc. We can obtain the most general expression 

for E and H in free space by superposition of plane waves, thus: 

E = � I dk.E�{a�el<k·n-rot) + a�e- Hk·n-rot)} (3.14) 

(3.15) 

with 



6 LECTURES ON ELECTRODYNAMICS 

The constants b� are simply related to at since we have the relation (3.4) 

Now 

Hence 

Vx E = 1 oH 
c ot 

v x E = i� I dk[k x f:t] {ate'<k·D -rut) 
- ate- Hk·D - rut)} 

1 OH_ i "f dk 
.a{b.a t(k•n - rut)_ b" - Hk·n - rut>} 

- - -- - - L.. Wf:k ke ke 
C Ot C J. 

Remembering that 

we get 

k X f:� = kE� 
k x f:� = - kf:� 

1 b2 ak = k 

2 bl ak = - k 

and the complex conjugates of these equations. 

(3. 1 6) 

The :fields can be expanded in terms of any other complete set of ortho· 
gonal functions, but the above Fourier expansion is convenient as it is 
simple analytically and we shall see later that the energy and momentum 
of radiation can be expressed simply in terms of the coefficients a�. Also, 
though the field near a radiating charge is  very complicated, at large 
distances away it can be expressed as a sum of plane waves and a coulomb 
field. 

4 APPLICATIONS TO THE SKIN EFFECT AND METALLIC REFLECTION 

Consider a semi·infinite conductor. As long as the dimensions of the skin 
are small compared to the radius of curvature of the wire, we can use the 
result derived above to study the skin effect in wires .  Inside the conductor 

. 1 E J = - (J (4. 1) 
c 

where a is the conductivity. First let us consider copper since for this metal, 
both the dielectric constant x and the permeabilityµ can be taken as unity .  
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Maxwell's equations inside the metal are then 

V · E = 4ne 

V·H = 0 

V x E = 
1 aH 
c at 

V x H = _!._ aE 
+ 

4mr E c at c 

7 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

Let us choose our axes so that the xy plane is parallel to the boundary 

surface of the metal, and let radiation of frequency w and plane polarized 
in the x direction be incident normally on the boundary. Then 

Ex(z, t) = f(z) e- lwt 

Hy(z, t) = g(z) e- lwt 

and we shall use the convention of taking the real part of E and H as the 

actual field. Assume 

e = F(z) e- iwt 

Then the conservation equation 

and (4.1) give 

��
+ V ·j = O c at 

- �iwF(z) e- lwt + !!... V · E = 0 
c c 

and using (4.2) we have 

and hence 

and 

iw 17.( ) _ lwt 4na 17( ) - iwt _ O - - r1Z e + --r,z e -
c c 

F(z) = 0 
e = O 

V·E = 0 
Taking the curl of (4.4) and using (4.5) we have 

1 iJ2E 4na aE V x (V x E )= -------c2 at2 c2 at 

(4.6) 
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and using (3.6) and (4.6) we get 

Taking 

we have 

whence 

which for 

yields 

AE = _I o2E + 4na oE 
c2 ot2 c2 ot 

d2f = 
(- w2 

_ 
4niaw )i 

dz2 c2 c2 

f = Aeo"' - 11)= 

w2 ( (ix - rJ)2 = - - 1 
c2 

4nia ) 
+ --

w 

_ w [ 1 { ( 4na )2}112 1 ]112 
X- -- 1+ -- +-

C 2 W 2 

w [ l { (4na)2}112 1]112 17 = --l+ -- --
c 2 w 2 

4na 
1 -- � 

w 

x � l )2naw 

rJ � c 

(4.7) 

1 /17 is the distance from the boundary to the point in the metal where the 
strength of the field drops to 1 /e of the value at the boundary, and hence 
it is  a measure of the thickness of the skin when an alternating current of 
frequency m/2n is flowing in the metal . 

EXERCISE 3 Find the value of w for which 1/1] = 10-3 cm in copper. 

For ferromagnetics whereµ varies with w and is not unity, it is found that 
"� } v 2naw --2- µ(w) 1] � c 

EXERCISE 4 Describe an experiment wherebyµ can be measured as a function of w. 

The reflecting power of metals can be found by solving a simple boundary 
value problem. The procedure is to adjust the amplitude and phases of 
the reflected and transmitted waves so that E and H are continuous at the 
boundary. From (4.4) and (4.5) we see that H also satisfies Eq. (4.7) 
so that 

Hy = Be<t"' - 17): - lwt 
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and then (4.4) gives (with c replaced by c/µ to take permeability into account) 

Hy 
= + (ix - r;) c 

Ex iwµ 

JH}.J 
= J 4na 

IE xi wµ 
Let the incident beam be given by 

Ex = Ae-lw(t-•fc> 
Hy = Ae-lw(t-•fc> 

Then the reflected beam will be given by 

E' _ A' - lw(t-"'/c> x- e 
H' _ -A'e - iw(t- • /c> 

y -

and the transmitted beam by 

E" = A" e<ix- 11>z-iwt x 

H" = (ix - YJ) c A"e<ix-11>•-iwt y • zwµ 
The condition of continuity of E and H at the boundary (z = 0) gives 

A + A' = A" 

A - A' = (ix - r;) c 
A" 

iwµ 

and from these equations we find the reflecting power r as 

c 2 
1 - - (x + irJ) 

_ IA'J2 _ wµ r - -- - t---------i 
IAl2 

EXERCISE 5 Calculate r for copper(µ= 1) for the value of w such that l/1J = 10-3 cm. 

5 ENERGY AND MOMENTUM OF AN ELECTROMAGNETIC FIELD 

The energy and momentum of a test body are well defined. We consider 
the changes in them caused by the interaction with an electromagnetic 
field and assign such values of the energy and momentum to the electro­
magnetic field that the laws of conservation of energy and momentum will 
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be satisfied .  From this we see that since only changes in the energy and 
momentum of an electromagnetic field are defined, they are undetermined 
by an additive constant .  We shall see later that the theory of relativity 
determines this constant . 

First we shall consider the energy. If E and pare the energy and momentum 
of a test body, we have 

where 

Therefore 

LIE = F · Llr 

= (F·v)L1t 

I F = eV{E + - v x H} 
c 

I LIE 
--- =eE·v v Lit 

= cE · j 
Similarly from 

we get 
Llp =FL1t 

1 · Lip I 
- -- = e{E + - v x H} 
V Lit ·c 

We shall require that 

where 

c(E · j) + 0 W 
+ V · S = 0 at 

W = the energy density of the electromagnetic field 

S = the flux of electromagnetic energy 

(5 .1) 

(5 .2) 

(5 .3) 

and obtain an expression for Wand S in terms of E and H. Equation (5 .3) 
is  a statement of the law of conservation of energy. 

Now from vector analysis we have 

E · V x H - H · V x E = -V · (Ex H) 

Therefore using Maxwell's Eqs .  (2.3) and (2.4) we get 

1 aE . 1 aH 
E · - - + 4.n(E · J) + H · - - + V · [E x HJ = 0 c at c at 

c I o 
- V · [E x HJ + c(E · j) + - -(E2 + H2) = O 4n Sn ot 
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Hence 

1 W=-(E2 + H2) (5.4) 
8.n 

c 
(5.5) S=-E x H 

4.n 

We see that the formula for the energy density W i s the same as that 
in electro- and magnetostatics. On the other hand if we apply the formula 
for energy flux to the case of uniform static fields, with E perpendicular 
to H, we obtain a nonvanishing result. This seems strange, but as V · S = 0, 
there is no difficulty . 

EXERCISE 6 Consider the case where E is still perpendicular to H but they are not 

uniform. It seems that cW/ct does not vanish. Is V. S equal to zero? 

For the momentum, we shall require an equation of the form 

cG + foE + [j x HJ} + V · T = 0 
ai 

(5.6) 

which expresses the law of conservation of momentum . We shall obtain 
the formula 

1 G=-S 
c2 

(5.7) 

for the momentum of the radiation, and shall obtain an expression for 
Maxwell's "stress tensor" T. Using (2.3) and (2 .4) we get 

a [ 1 J 1 [ aE J 1 [ aH J - --E x H = -- -- x H +--E x -
ot 4.nc 4nc ot 4.nc ot 

= _l_ (V x H) x H - j x H - _l_ E x (V x E) 
4.n 4.n 

= -1- {(H · V) H + (E · V) E - _!.._ V(£2 + H2)} - j x H 
4.n 2 

From (2.1) and (2. 2) we also get 

_l {H(V · H) + E(V · E)} - Ee = 0 
4.n 
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Adding this to the above equation, we obtain 

_!__ {-
1
-E x H} + eE + j x H at 4nc 

= _l {E(V · E) + (E · V) E + H(V · H) + (H · V) H - 2_ V(£2 + H2)} 
� 2 

Writing this in component form, we have 

J__ {-1- [E x H]; } + eE1 + [j x H], 
at 4nc 

= -1- LE, VJEJ + E1 V1E1 + H, V1H; + HJ VJHi - � V1(.E2 + H2)} 
4n 1 2 

with 

Thus we have (5.6), where 

a V· =­
i axl 

1 1 
G=-S= -ExH (5.8) 

c2 4nc 

We note that for a plane electromagnetic wave we can write 

where 
IGI = µc 

w 
µ = ­

c2 

which is the first indication of the equivalence between mass and energy. 
Further, in free space Eis perpendicular to Hand IEI = IHI so that 

EXERCISE 7 Show that 

S = cnW 

G = 
nW 

c 

�Tu- W=O 
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EXERCISE 8 1) Calculate the force on an antenna radiating 30 kW in a narrow beam. 
2) Calculate the velocity of recoil of a Li8 nucleus when it emits an 18 MV y-ray. Also 

calculate the velocity of recoil of an electron if it emitted such a y-ray. 

The diagonal components T11 of the stress tensor T represent the pressure 
exerted by the radiation. For radiation in a cavity 

(£;) = (£;) = (£;) = t (£2) = (H;) = (H;) = (H;) = t (H2) 

(EiEJ) = 0, (H,HJ) = 0, for i ::f: j 

(TtJ) = 0 i ::f: j 

(Tu)= _1_(£2) 
1 2n 

(S) = (G) = 0 

W= _1_ (£2)  
4n 

(T11) = pressure = 1 W 

So far we have talked only about energy and momentum densities. 

The total energy and momentum of a field is obtained by integration 

I (E2 + H2) E= dr -----
8n 

(dr = dx dy dz) 

P = Jdr 
Ex H 

4nc 

(5.10) 

(5.11) 

If we write E and H as sums of terms, then E and p will be double sums, 

and in general there will be interference, and the expressions will be com­

plicated. However, if Fourier expansion is used, E and p can be written 

simply as single sums. To show this, we have (3.14) 

E = �I dkE� { atei(k. r - wt) + ate-ICk·r - wt)} 

Let 

Then 
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whence 

£2 = LL I dk I dk' E� . E'· {cX�<X�'.ef(k+k'). r + a�<X�'.e-f(k-k')o r 
,\ ,\' 

f E 2 dr = 8n3 � � f dk f dk' E� 
• t:�', 

x {(a�at', + a�a�',) o(k - k') + (a�a�', + IX�a�',) o(k + k')} 

Now 

and we can choose E:k so that 

Then 

Using these facts and replacing the°'� by the a�, we obtain 

(5.12) 

Since from (3 .14) and (3.15) H can be obtained from E by replacing at by 
b�, we have 

+ (h�h:k - h�h:_J e+21wt} 
Using (3.16) we get 

(5.13) 
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Hence, on adding (5 .12) and (5.13) , the oscil l atory terms cancel ,  and 
(5. 1 0) gives 

E = 4n2 � J dk (a�a�) (5.14) 

Now for the momentum, we take the vector product of (3 .14) and (3. 1 5) 
after making the substitutions 

We get 

. .a _ a.ae-lwt 
(\k - k 
{3). _ b). -lwt 

k - ke 

+ cx�/3�'.e-t<k-k').r + (\���'.el(k-k').r 

+ a�p�·,e-Hk+k')·r} 

We have 

and the other products vanish .  Hence 

k 
k 

I 3 I k { -1 2 1b-2 -2b 1 2b-1) E x H dr = 8n dk k (akbk + ak k - ak k - ak k 

( 1b2 + 2b1 ) e-21wt 
- ak -k ak -k 
- (ato:k + a�b:J e11wt} 

3 I dk k {2( -1 1 2 -2) = 8n k akak + akak 

( 1 1 2 2 ) - 2 lwt 
- aka-k - aka-k e 

(-1 -1 -2 -2 ) 21wt; 
- aka-k - aka-k e , 
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The integral of the oscillatory terms vanishes since this part of the integrand 
changes sign when k is replaced by -k. Hence {5.11) becomes 

6 RADIATION FROM A CHARGE AND CURRENT DISTRIBUTION 

(5.15) 

We shall first give a method of calculation which is most convenient when 
only the rate of radiation of energy is required. We write E as the sum of 
" transverse" and "longitudinal " fields E.L and E11 respectively, which are 
defined as follows: V · E.L = 0 

V x E11= 0  

In other words, we break up E into its solenoidal and irrotational parts. 
Maxwell's Eqs. (2.3) and (2. 1 )  then become 

We can write 

and 

V. E11 = 4.ne 

1 oH 
V x E.i. = 

c ar 
E11 = -Vcp 

Ltp = -4:re 

p(r, t) = f e (r'' t) dr' 

Ir - r'I 

E = -V f e (r', t) dr' 
II 

I 'I r - r 

(6.1) 

E11 is calculated by keeping t constant . Maxwell's equations can now be 
written in the form V · E.L = 0 

V·H = 0  

I oH V x E.i. + - - = 0 c at 

V H _ � oE.i. _ 4 . 1 8E11 x --- nJ + - --

c ot c ai 

(6.2) 

(6.3) 

(6.4) 

(6.5) 



Now 

MAXWELL
'
S THEORY 

_!_ cE11 = -V _!_ j_ f e(r', t) dr' 
c ot c at Ir - r'I 

and using the equation of continuity (2.5) we obtain 

Thus 

_!_ fJE11 = V f V' · j(r', t) dr' 
c fJt Ir - r'I 

V · (4nj + _!_ cE II ) = 4n V · j + f V' · j(r', t) dr' L1 
l 

c ct Ir - r'I 
and since 

it follows that, 

L1 1 
= -4nc5(r - r') 

Ir - r'I 

V ·(4nj + _!_ fJE11 ) = o 
c fJt 

17 

Thus E11 takes out the longitudinal part from j. Hence EJ. and H can be 

represented in terms of transverse waves. We shall write 4 • 
4 • 1 fJE11 Jtj = Jtj + - --

.L c ct 

It means that only the component of j perpendicular to the propagation 
vector excites transverse electric waves. For if we make a Fourier expansion 
of j, 

where 

and 

then 

g;Jk, t) = -1- f dr j(r, t) · E� e-lk·r 
8n3 

V · j = i � f dk E� · k{g;.(k, t) e'k·r - g;.(k, t) e-'k-r} 

= i J dk k{g3(k, t) e'k·r - g3(k, t) e-lk·r} 
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Thus the expansion of j.l is 

j_1(r, t) = L f dk t�{g;.(k, t) eik·r + g;.(k · t) e-ik-r} (6.6) 
..l.=1.2 

This follows from the fact that, since V · j.l = 0, j.l cannot have any com­
ponent parallel to k. 

We now introduce a vector potential A(r, t), which we define in this 

case by the following equations: 

H=VxA 

E = _ .!._ oA 
.i c ar 

V·A = 0 
Then Eqs. (6.2), (6.3) and (6.4) are automatically satisfied, and we are 
left with just (6.5), which becomes 

1 o2A 
-L1A + - -- = 4nj (6.7) c2 ot2 

.l 

Let us now make a Fourier expansion of A. Since V · A = 0, A has no 
component parallel to k. Hence 

where 

A �=�.2 f dk t�{17;.(k, t) e1k·r + ?];.(k, t) e-ik·r} (6.8) 

1];.(k, t) = -1- f dr A(r, t) · t� e-ik ·r 
8n3 

Substituting this expression for A into (6.7) and using (6.6) we find 

L f dk tt [{k211;. + _!__ 'i/;. - 4ng;.} e'k·r ;.=1.2 c2 {k2_ 1 · · 4 } -lk·r] O + 1JA + 
c2 17A - ngA e = 

where a dot denotes partial differentiation with respect to t. Hence 
�A + c2k21JA = 4nc2gA 

This is the differential equation of forced oscillation. Its complementary 
solution, that is, the free vibration, is given by 

f};. = L;.(k) e1wr + M;.(k) e-lwr 
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Putting this into ( 6 .  8) and calculating E .L we get 

E.L = - iw L f dk E� [(L;.eiwt - M;.e-lwt) e'k·r c ).= 1,2 

In free space E.L = E, and comparing (6.�) with (3.14) we find 

L;, = 0 

and hence 

iw ;, -M;, = +ak c 

19 

(6.9) 

If we consider the current to vary harmonically with the time and write 

then the particular integral is 

and hence the general solution is 
L iwt M -iwt 4nc2y;, -M 17;, = ;,e + ;,e + e 

wz - vz 
Let us choose the constants so that E .L = 0 and H = 0 at t = 0. Then 

4nc2y;, v 
L;, - M;. - - = 0 

from which we find 

w2 - v2 w 

2nczy;, L.i. = - ---­

w(w + v) 

M;,= 
2nczy;, 

w(w - v) 

rJ;. = 4nc2y;. {-e_-_,_�i_ wz _ vz 
e-iwt } 

2w( w + v) - 2w(w - v) (6.10) 
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and forw � v 
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,.,_ 2 -lwt �ic "/;.e {l + t(w-11>t} 'YJ;. � - - - e 
w(ro - 'V) 

The rate of radiation of energy is  obtained by finding the part of 

E = _1 f (£2 + H2) dr Sn 

= _
1 f (Eff + El + H2) dr 

Sn 

(6. 1 1 ) 

which increases secularly with t. It is clear that E11 does not contribute 
to this energy since it is just the coulomb field of the charges. Thus we 
need only consider the energy in the radiation field 

Erad = -
1 f (El + H2) dr 

Sn 
From (6.8) and the definition of A we have 

E _." f dk }. { 1 · lk•r 1 ...:.. -lk·r} 
J. - ,t.., Ek - - r;;.e - - 'r/;.e J.=1,2 c c 

H " f dk }. {·k lk·r ·k- -ik·r} k 
= ,t.., n x Ek i r;;.e - i 'YJi.e , n = - . 

).=1,2 k 

Now the dominant contributions to these integrals come from the region 
w � ,,, where we have 

so that, comparing these equations with (3 .14) and (3 .15) , we can make 
the correspondences iw a� e-lwt = -1];. 

c 

bl -trot .k k e = - 1 'Y/2 
b2 - lmt •k 

k e = ' 171 
which satisfy the relations (3.16). Hence we can obtain the value of E in 
terms of r;� by making these correspondences in (5 . 14) .  The result is 

Erad = 4n2 _L f dk (w: ij,.r;).) 
,l.-1.2 c 
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From (6.11) we have 

Thus 

8.n2c4y y 
f);.r;;. = ;. ;. {1 - cos(w - 'V) t} w2(w - v)2 

Erad = 32.n4c2 L I I kl dk d!l Y;.Y;. {1 - cos (w - v) t} 
;.= 1,2 (w - v)2 

21 

Since the integrand has a sharp maximum for w = v, we can take k2Y.i.YA 
outside the k integral, which then becomes 

co co 

I dw {1 - cos (w - v) t} = !_ I sin2 x 
dx 

c ( w - v )2 c x2 
0 -�2 

Since the integrand falls off very rapidly, for t � 1 /v, we can take the lower 

limit as - oo. Therefore 

integral 
.nt = -
c 

and 

Hence the rate of radiation of energy in the solid angle d!l is 

'J.'2 I I ,. 12 = d!l 
2nc 

dr [j x n] e - ';;-n·r 

EXERCISE 9 Show that for the case of zero total charge 

and hence 

- 1 2 1 W.11 = - E110C -6 8;'1; r 

- 1 2 2 1 W.L = -(EJ. + H )OC 2 Sn r 

w. -1-1 --+- O as r --+- oo w.L 
Also give an idea of the distance where w11 becomes negligible. 

(6.12) 
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Let us apply (6. 1 2) to calculate the radiation from an antenna. Consider 
a current in a conductor whose breadth is very small compared to its length 
L. Let the z axis be along the conductor. Then only the z-component of j 
is different from zero; suppose it to be of the form 

Now 

so that 

i = Jz x y = - sm - e + e f f · d d 
I ( · nz) 

( 1,,r - tvt) 
2 L 

at 
-cV · j 

A= ff edxdy = Ao(z) - n;.: cos n; sin vt 

Hence the current and charge distribution in the wire have the following 
forms. 

; 
-z 

0 t--------1f-------< L 

It is clear that A0 cannot be a function of z for a uniform, straight iso­
lated wire in free space, and it may be taken as zero . 

If .?. = me � L, then the integral 
v 

f 2n:I 
dr [j x n] e- -).-n·r 

i s  easy to perform. Put r = r0 + r1 . Then the integral becomes 

2n:I 2n:I 
e -To·ro I dr1 [j(r1' t) x n] e--y<n·ri) 

and under our assumption we have 

so that 
2n:I -- (o·ri> e .i. � 
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dR = df1� (L1)2 sin2 (J 
2nc n 

2L212 
= df1 v sin2 fJ 2n3c 

Here (} is the angle between the z-axis and n. 

23 

l 

EXERCJSE 1 0  Taking R = IO watts, v = 107 sec-1, and L = 10 cm, find the maximum 
charge accumulated on one-half of the wire. 

For the general case we have to evaluate the integral 

L 

f 2nl 
I d . nz --zcos(j = z s1n - e .i 

L 
0 

The integration can be carried out by writing the exponential factor as a 
sum of cosine and sine terms; the resulting trigonometric integrals can be 
evaluated by elementary means. The result is 

Hence 

and 

1112 
L ( - 2"1 Leos()) I = -------- l + e .:t 

n (I - -
4
;.
-�-2 cos 2 (J) 

4 L2 nL cos() 
= � -------- cos2 �---(1 - 4�2 cosl (Jr 

2/2L2 sin 2 (J nL cos 0 dR = df1 v --------cos2 ----
2n'c (I - 4�' cos' 0 )' l 
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We note that when n is perpendicular to r1 (sin 0 = I) this result gives the 
same value as the approximate expression obtained above for A. � L. 

Consider a spherically symmetric charge distribution which oscillates 
radially. Such an oscillation of charge cannot give rise to any radiation, 
for we have seen that only the part of the current perpendicular to the 
propagation vector gives any radiation, and if we consider any plane through 
the charge distribution, to any point P, then on the plane there is a point P', 
symmetrically placed with respect to it, where the value of the current is  
equal and opposite to that at P.  Thus the integral (6.12) vanishes, and 
there is no radiation. Another proof can be given by using Gauss's theorem, 

which states that the field outside a spherically symmetric distribution of 
charge is the same as that when all the charge is concentrated at the center. 
It follows from this that with our distribution of charge the field is radial 
and constant. Hence there is no radiation. 

Let us now consider radiation from an atomic system. In nonrelativistic 
theory, the expression for the matrix element of the current between two 
stationary states m and n is 

This is obtained from Schrodinger's equation and the condition of con­
tinuity. By analogy the rate of radiation from state n to m is 

(6. 1 3) 
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he __ , -· 7 x 10-28 x 3 x 1010 ---- IL · - - 10-4 cm 
En - Em 8 X 10-12 

25 

and the size of the atom is d = 10-s cm so that d/A � 1 ,  and we may 
neglect the exponential . We may make a rough estimate of (6. 1 3) by 
setting 

Introducing the partial line breadth I'nm, we have, for the transition rate, 

Fz 
,..., e1 En - Em (-" )2 

lze Fz med 

- - (v) -·-
1 ( Fz me2 )2 

1 37 me h2 
where we have taken 1z2 

d-a=-­
me2 

Therefore 
I'nm ....., (-1-)3 V, I'nm "' (-1-)3 (En - Em) Fz 137 1 37 

1z2 
Or again, since p2d2 "' Fz2, d2 "' 

we have 
m1i32 

( Fz )2 jj2 
med 

"' 
e2 

r i v2 nm -- =--V -
fi 137 c2 

The natural lifetime is  the reciprocal of this. 

EXERCISE 11 Considering the dipole term only, that is, neglecting the exponential in 

the integrand, calculate the mean lifetime of the state Un where there is only the state Um 
below it, where 1 r 

Un 
= 

-- e-2r/2o COS () V 2:n:a3 4:n:a 

1 
u _ -- e-rfo m - V:n:a3 

fz2 
a=--

me2 
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Also show that the transition from Un • to Um , where 

1 ( 1 r ) -r/2a ltn 1 = V2na3 z - 4a e 
is completely forbidden. 

Using Eq. (6. 1 3) ,  we can prove that a free electron does not radiate. 
The wave function of a free electron can be taken as 

u = e'k · r 

and the energy Ek corresponding to this state obtained from the relation 

which for this case is 

Now lz p = - V, 
i 

2 _!!__ e'k . r = Eke'k . r 
2m p2 = - !z2LJ , fz2k2 fk . r E lk . r -- e = ke 

2m 

which yields 

We want to show that the integral 

vanishes for this case. Putting in the corresponding values, the integral is 

i d re
'--y,nc-a · r e - fk ' · rn x ke'k · r  I 11(k2 - k 'l)  

= {2n)3 i t5 n - k' + k n x k 
( h(k2 - k'2) ) 

2mc 

Thus the integral is zero unless 

that is , 

li(k2 - k'2) k' = k + n 
2mc 

me 4m2c2 
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The values of k2 - k' 2 which satisfy this relation are zero and 

Now 

4m2e2 { 
k2 - k'2 = - 1 + 

1z2 

lzn · k � mv � 1 
me me 

lzn · k } 
me 
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and since k2 - k' 2 cannot be negative, the second solution is not good . 

Hence k' = k, and there i s  no radiation. 

7 SOLUTION OF MAXWELL'S EQUATIONS IN TERMS OF RETARDED 

POTENTIALS 

We introduce the potentials cp and \j1 defined by the following equations : 

1 av E = - Vcp - - -
c at 

H = V x \jl 

I ocp V · \jl + - - = 0 
e at 

(7 . 1 ) 

(7 .2) 

(7.3) 

{7.3) i s  the Lorentz condition which restricts the gauge . That is ,  {7. 1 ) and 
(7.2) do not determine cp and \j1 completely, for if 

, 1 aA } cp = cp - - -
e ot 

\jl' = \j1 + V A 
{7. 4 ) 

where A is  any scalar point function, then cp' and \jl' give the same field as 
cp and \jl. Thus there is  a family of transformations generated by A which 
give the same field. Suppose 

1 ocp' I - - + V · \jl = y 
c at  

Then putting in  (7 .4) we see that cp and 'l/J satisfy the Lorentz condition if 

I o 2A O A =  - - -- + LIA =  + y 
c2 ot2 



28 LECTURES O N  ELECTRODYNAMICS 

Now with the above definition of <p and "1 we see that Maxwell's Eqs. (2.2) 
and (2 .3) are automatically satisfied, and (2 . 1 )  and (2.4) give 

and 

1 0 
-LJ<p - - - V · "1 = 4ne c ct 

D <p = -4ne 
i a 1 02"1 • V x (V x \jl) + - -V <p + - -- = 4nJ c ct c2 ot2 

-L1"1 + v {v . "1 + _!._ ocp } + _1 a2\jl = 4nj 
c ct c2 ct2 

(7.5) 

D "1 = -4nj (7.6) 

Thus we have to solve Eqs. (7 . 5) and (7 .6) with the condition (i . 3). These 
equations are consistent since 

o {_!._ o<p + v · *} = - 4n {_!._ ce + v · j} = o c at c at 
We shall show that .the solutions of (7.5) are f ( I r - r' I ) e r' , t + ---

<p (r, t) = dr' 
c 

:i: 
I r - r' I 

where <p- and Cf!+ are called the retarded and advanced potentials respectively. 
The general solution is 

<p = acp + + ( 1 - a) cp _ 

where a is any real number. Similarly, the solutions of (7 .6) are f ( I r - r' I ) j r' t + ---
"1 (r, t) = dr' 

' 
c 

:i: 
I r - r' I  

T o  derive these solutions, make the Fourier expansions 
+ oo  

e(r, t) = f ever) e'vt dv 
- oo  

+ oo  

evCr) = -
1

- f e(r, t) e- "' dt 2n 
- oo  
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+ oo  

cp(r, t) = J Cf'v(r) e"' dv 
- oo  

+ oo  

cplr) = - <[{r, t) e - i vt dt I I . 2n 
- oo  

Substituting these values in (7.5) we have 

+ oo  J {Liq>, + ;: q>, + 4ne}''' dv = o 
- oo  

29 

We shall solve this equation by using a Green's function, G(x, x') . It has 

the property that if 

D<p = f 2 
where D is an operator, which in our case is L1 + 2'._ ,  then 

c 2 

cp(x) = J f(x') G(x, x') dx' 
Applying the operator D to this equation, we find 

DG(x, x') = c5(x - x') 

For our case, there are two different G's 

G +  -

I v  
± - lr - r' I  e c 

4n Ir - r'I 

Hence for large values of r, 'Pve'vt behaves l ike 

r 

so that the + sign gives incoming waves and the - sign gives outgoing 

waves. In calculating the radiation from a charge, only the - sign should 
be used . It is interesting to note that we can make an oscillating charge 

stop radiating by sending in radiation of suitable amplitude and phase . 
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To verify the formula for the Green's function, take r' = 0. Then 

- t �r e c 
G = - ---

4nr 

L1G = b(r) e c - -- -- e c + - - e c - 1 .!:_ r I ( o2 _ , _::_ r 2 iJ - t � r ) 
4nr iJr2 r or 

- 1 .!:_r  v2 I - t � r 
= b(r) e c + - -- e c 

c2 4nr 
whence 

The exponential coefficient of b(r) is left out since b(r) vanishes everywhere 
except at r = 0, and here the exponential is unity. 

Thus we have 

f e - ' ; l r - r ' I 
Pv = dr ev(r') ---­

I r - r'I 

+ oo  

cp = f dv e''t f dr' t>w(r') _e_-_' c_
11 

1_r-_r_' I  
Ir - r' I  - oo  

+ oo  + oo  

= f dv e''t f dr ' e - ' 7 1 r - r ' I  _I_ f e(r', t') e - i.t '  dt' 
I r - r' I 2n 

- oo  - oo  
+ oo  

= f dr' 1 f dt' e(r' , t') b( t - t' - I r � r' I ) 
I r - r' I  

- oo  

(7.7) 
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It can be shown in exactly the same way that f ·( , I r - r' I ) J r , t - ---
"' = dr' c 

I r  - r' I 

3 1 

(7. 8) 

It is not difficult to show that these solutions satisfy the Lorentz condition. 

Setting 

I r - r' I T = ---
c 

we have 

Also 

- - = - - e(r , t - r) 
1 ocp f dr' 1 a , 
c ot Ir - r' I c ct 

OVJx = f dr' {!_ I }jx(r' ,  t - i) 
ox o x  Ir  - r' I 

+ r -Jx r ,  t - T -f d , 1 o . ( , ) oT 
Ir - r' I or ox 

= - f dr' {_!___ I }jx(r', t - i) 
o x' Ir - r' I 

-- - (jx(r' ,  t - r)) -f dr' o � 
l r - r' I  o-r: ox' 

the last form following from 

� Ir - r' I  = _ !_ Ir - r' I  
ox ox' 

Now 

f dr' { o:' Ir � r' I }ur', 1 - T) - - f Ir �·r' I O
:

' 
ix(r', 1 - T) 

Therefore 

01/)x f dr' { a { . 
( 

I )} a . ( I t ) OT: } -- = - ]x r , t - T - - ]x r , - 7: -, ox Ir - r' I ox' OT ox  

= -lx r ' t f dr' [ a . ( , ')] Ir - r' I ox' r ' = f - T 
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and hence 

q.e .d .  
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2- ocp 
+ 

v . "1 
c ot 

= - - e  r ,  t + · J r ,  t f dr' [ 1 0 
( I ') v I "( I ')] 

Ir - r' I c ot t ' = t - t"  = 0  
Let us now consider some particular cases  of our solutions .  Suppose 

the charge and current distribution are confined to a region of dimension d, 
and consider the radiation at a point P outside it . 

R Ir - r' I· For - = small, the solutions reduce to c c 
cp(r, t) � e(r' ' t) 

f dr' 
I r - r' I 

\jl(r, t) � f dr' j(r' , t) 
Ir - r' I 

p 

(7.9) 

These solutions are good if, during a length of time R/c, e and j do not 

change appreciably . (That is, 

R 1 
- � - = T 

c (JJ 

where w is a typical frequency in the Fourier decompositions of e and j .) 
They are called the quasi-static solutions and their fields are the ones 

given by Coulomb's and Ampere 's Laws . 
For large values of R, the approximate solutions give the wavezone 

field. The condition of validity cannot be given in a general way but only 

for the Fourier components.  It is 

vR - � l 
c 
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vR 
We shall first show that for - � 1 and r � r' 

c 

'Pv � n . "1v 

where, under our second condition, 

r n � -
r 

From the Lorentz condition we have 

Now 

and 

Therefore 

iv 
V • "1v + - <pv = 0 c 

-- - - lvx r e c Olf',.x _ 0 f dr' . ( ') - i �  J r - r ' I  
ex ox Ir - r' I ( ,12 ) 

I r - r' I = r - r' cos (r, r') + 0 -,- � r - n · r' 

-- "" - r lvx r l - - e otp,.x ,....., 1 f d , . ( ') ( - . v ) x - i ; l r - r ' I  
ox r c r 

33 

where we have kept only the term with the lowest power of 1 /r. By a 

similar approximation it follows that 

and hence 

Olf'vx ,....., __ ,....., ox 

iv 
- - nx"Pvx c 

. v  v . "1v � - l - n . "1v 
c 

The Lorentz condition then yields 

In the following considerations, we shall restrict our attention to one 

frequency v so that 

'( ) • ( ) lvt -: ( ) - lvt  J r, t = Jv r e + Jv r e 
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Now 

and 
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- 1.!'.... r f dr' e,(r') e
' ;. · " e c 

<plr) � 
r 

- 1 .!.. r f dr' j,(r') e
1 ;. · , . e c 

Wv(r) � 
r 

iv Ev = -V 'Pv - - Wv 
c 

Hv = V X Wv 

First we shall show that E 1- H 1- n. In carrying out the differentiation of 

the potentials, we shall keep only the terms which are proportional to 1 /r 

and neglect terms in higher powers of l /r, since we are interested in the 

value of the field far away from the charges. Let 

Then 

Now 

I �D r' 1 = dr' ivC r') e c • 
- ·� 

(V x*,), "' {( - >}• - (- i ; n,) r•} e ,' 
iv iv Ev � - D'Pv - - Wv 
e c 
. _ ,,,, IV -Hv � - 1  x n e c 

re 

iv - I� � - - e c {y - n(n·y)} 
er 

. ,,. IV - -r n x Hv � - n x [y x n] e c 
re 
. . lV } - 1-r � - {1 - n(n · y) e c 

re 

Hence E, H and n are perpendicular to each other and form a righthanded 

system in this order. Also IEI = IHI . 



MAXWELL'S THEORY 35 

Next we shall show that the potentials 

"1; = "1v - n(n · "1v) 

97; = 0 
give the same field as "1v and 'Pv in the present approximation : 

� v x +v + n x v 'Pv 

EXERCISE 1 2 Taking e and j for the hydrogen atom given in Exercise 1 1 ,  calculate to 

what distance the quasi-static field and from what distance the wave zone field are good 

to within 1 0  percent of the correct field. 

Let us now consider the Poynting vector 

c S = - E x  H 4n 
From the above considerations we have 

where 

c S = - n lEl 2  4n 
E = E e''' + E e-"" v v 

IEl 2 = E;e2 1,,r + E;e - 2"" + 2IE, 1 2  

On the average, the oscillating terms are zero, so that 

c ')12 
S = - n - lr - n(n · r) l 2 2n c2,2 

2 f 111 2 'JI n . -- (a · r> 
= dr' {j(r') - n(n · j(r'))} e c 

2ncr2 
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Hence the rate of radiation in the solid angle d!J. i s  given by 

dR = d!J. _v_ dr' L _(r') e - -c<n · r  > 2 I iv , 2 
2nc 

which is the same as (6. 1 2) calculated in Section 6 . 

(7. 1 0) 

We shall finally consider the general case, and calculate the energy 
radiated by a pulse of current . We have 

00 

c 
S = - E x H 

4n 

c 

4n 

+ oo  + oo  

- oo - oo  

+ oo  + oo  

+ oo  

= ; f dv Ev X H_v 
- oo  

We have seen that i n  the wave zone field 

where 

and 

iv _ !.!'.r Hv = - Yv x n e c re 

• -(n • r ' )  I i v  
'Yv = JvCr')e c dr' 

Hence, restricting v to positive values 

00 00 I S dt = c -1 - n f dv v2 I Yv x n j 2  c2r2 
- oo  0 
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and if Qv i s  the total radiation emitted per unit frequency range, then 

00 00 J Qvdv = J dQ J dt r2S · n 
0 - 00 

00 

= � f dQ f dv v2 I rv x nl 2 
0 

v2 dQv dv = - dll dv Irv x n l 2 
c 

Putting in the value for rv we have 

v2 f �<n . r) 2 dQv dv = 
-;;-

dll dv dr [n x iv(r)] e c 

= -- dn dv dr dt [n x j(r, t)] e c V2 f f - i ( vt - �D • r) 2 
4n2c 

8 CLASSIFICATION OF MULTIPOLE RADIATION 

We have seen that 

where 

iv Hv � - - n x Wv c 

e c t- n . r '  
-�r J " 

Wv = -,- dr' iv(r') e c 

Now if d is the size of the charge distribution and 

vd d 
- = - < 1 c A 
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(7 . 1 1 ) 

we can expand the exponential .  This condition can also be stated in the 
form 

Vcharge < 1 
c 
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since vd ,..., vcharie . Also for atoms, we have from the uncertainty principle 

lz 
d rv .J-p2 

a.J p2 can be greater than lz but it will be of this order for the lower states. 
Hence 

lz !._ 
Pead c vd --- "' -- = -

Pchae1e lz/d c 

Hence another form of expressing the condition i s  

Pead < 1 
Pchae1e 

Thus if any one of the three equivalent conditions obtain 

I ) d � A 

2) Vchaeae � C 

3) Prad � Pchae1e 

then it will be sufficient to expand the exponential and take the first few 
terms. The condition holds for optical transitions in atoms, y-ray emission 
from nuclei , and for some macroscopic systems. Taking just the first term 
of the exponential , that is, replacing it  by unity, corresponds to leaving 
out the recoil of the charge since then the absolute values of E and H are 
not changed by replacing n by - n. It also corresponds to leaving out the 
magnetic field of the charge in motion since taking the exponent zero 
means taking Vcharae = 0. And finally it corresponds to neglecting the phase 
difference between radiations emitted from different parts of the charge 
distribution. 

The usual procedure in making the calculation is to expand the ex-
ponential l �n ·r '  � { iv ( ')}t 1 e c = t... - n · r -

t c k ! 
and take the first non-vanishing term . An exception occurs in the nucleus 
where there are approximately equal numbers of protons and neutrons. 
It cannot oscillate as a whole and it cannot vary its charge distribution 
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very much, so its dipolo moment is small. However, it can have a large 
quadrupole moment by deforming its shape, and it turns out that the 
quadrupole radiation is of the same order of magnitude as the dipole 
radiation, although vd/c is quite small.  

The classification of radiation is  done in  two ways : 
l ) by k, the power of the exponent, 
2) by the angular distribution of the radiation. 

a) Electric dipole radiation (k = 0) 

For this case 
e, = f dr' {j,,1(r') - n1 �j,,J(r') n1} 
h, = J dr' {n1j,.1(r') - n,j,J(r')} 

where i, j, I form a cyclic permutation of x, y, z, and where 

c . � 
e = - - re c E,, iv 

Let us take the z-axis parallel to* 

c . � h = - - re c ff,, iv 
J = J dr' j,,(r') 
J 

n 

(8 . 1 )  

(8 .2) 

• The relation of the vector J to the electric dipole moment may be made apparent 
iv 

by using the charge conservation law V · j, + - (!,, = 0. From Gauss' theorem we have 
c 

whence 

0 = I V · G,,r) dr = - : I r Q., dr + fj, dr 
iv I J = � P with P == re,, dr. [Ed.I  
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Then 
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nx = sin () cos <p 
ny = sin () sin <p 

nz = cos () 

J - 0 y -

ex = - J  sin () cos () cos <p 

ey = -J sin () cos () sin <p 

ez = J sin2 () 

hx = J sin () sin <p 

hy = - J  sin () cos <p 

and hence the angular distribution of the radiation i s  
S oc  sin2 (} 

z 

y 

b) Magnetic dipole and electric quadrupole radiations (k = 1 )  

I n  this case 

e1 = i; f dr' � n5r� Vv1(r') - ni �jJr') n1} 
hi = !!!_ j' dr' L nsr� {n1jv1(r') - n,jvJ(r')} c s 

(8 .3) 
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Then 
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Yis = - r lv i r rs 

c 

e, = I Yis1ls - I Yisnsninj 
s j, s 

hi = L Y1s1lsllj - L Yis1ls1l 1 
s s 
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1 
(i, j, /) I (8 .4) 

Now Yis is a tensor, and it can be broken up into symmetric and anti­
symmetric parts : 

Yts = -! (Yis + YsJ + t (Y1s - YsJ 
The symmetric part gives the electric quadrupole radiation, and the anti­
symmetric part the magnetic dipole radiation. 

First let us consider the magnetic dipole radiation. Let 

1 
( 

) iv J [j ' ]  d 1 m , = - Yis - Yst = - v x r 1 r 
2 c 

where t, i, s form a cyclic permutation of x, y, z. We see that m is the 
moment of the current . Replacing Yis by m1 in (8 .4) and using the anti­
symmetric properties, we get 

ei = [n x m]1 

Comparing these equations with (8 . 1 ) ,  we see that the field of the magnetic 
dipole may be obtained from that of the electric dipole by making the 
correspondences 

Hence the angular distribution of the radiation is again given by 

S oc  sin2 () 

However the magnitude of S is in general smaller by the factor (�)2 • 
Now 

A f [j x r' J dr' = � f e [v x r' J dr' 
and if the mass density µ is  proportional to the charge density (!, the magnetic 
dipole moment is proportional to the moment of mementum 

J µ [v x r ' ]  dr' 
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Since this i s  constant for an isolated system, it cannot have magnetic 
dipole radiation.  This would be true for electrons in atoms if the electron 
did not have a spin with a g-factor of approximately 2 rather than unity. 
A ring of current which varies harmonically with time has magnetic dipole 
moment. However, such oscillation cannot occur in an isolated system if 
µ/e is constant, for the angular momentum of such a system cannot os­
cillate . 

Let us  now consider the electric quadrupole moment. *  The symmetric 
part of Yis has 6 components, but only 5 independent quantities determine 
this radiation . This follows from the fact that the values of e and h are 
unaltered by an addition of diagonal terms y <5,s to y1s > and this is related 
to the fact that the radial component of the current does not give rise to 
any radiation. 

Consider the current distribution 

For this case 

z I . 2nz 
j,. = - - sm - b(x) c5(y) 

z 2 L 

Y zz = Q = 
iv J j,.zz dr c 

• Again from Gauss' theorem we have 0 = I v . (j,.rr) dr = - i; I e,.rr dr + 
f (j,,r + rj,.) dr whence it follows that y�Jm - + �,1 � l'kk = + ( � ) 2 Q;; where Qli is 
the quadrupole moment tensor : 

Q,, == I  e,. (i·,r, - � �1l2) dr. [Ed.]  
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and all other Yts = 0. If the polar axis is taken along the z-axis as usual . 
we have 

ex = - Q sin 0 cos2 () cos <p 
e,, = - Q  sin 0 cos2 () sin <p 
ez = Q sin2 () cos 

hx = Q sin (J cos (J sin <p 
h,, = - Q sin () cos () cos <p 

and the angular distribution is 

S oc  sin2 20 

x 

EXERCISE 1 3  Calculate the angular distribution of the radiation from the following 

current system 

J. = - - sin - 6(x)6(y) - sin - b(x + I) 6(y) z I { nz nz } z 2 L L 
This represents a harmonically oscillatin g current in two l inear conductors of length L 
parallel to the z axis and a small distance I apart.  It will be found that only 'Yir:ic is different 

from zero . 

EXERCISE 1 4  I n  Exercise 1 0, the charge accumulated o n  one-half of the wire for the 

case of dipole radiation was calculated. Make a similar calculation for the quadrupole 

radiation using the same dimensions and numbers, and compare the two results . 
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If we can find the angular distribution of radiation from atoms, then we 
can tell what kind of radiation it is and hence learn something about the 
atom. However, we cannot find it by measuring the intensity of the radiation 

at different directions since we have to have many atoms and these would 
be oriented at random. The radiation from a single atom is coherent, 
but radiations from different atoms are incoherent . It has been suggested 
that the study of the interference properties of the radiation from atoms 
would give the type of radiation . 

The character of y-radiation from nuclei may be found by studying the 
field at a distance r from the nucleus such that 

r � d  
r < .A 

This region is called the diffraction zone. Under these conditions, we can 

still expand the exponential 
t ..!'... j ..- r ' I 

e c 
and we can also expand 

--1 -, = _!_ L (-'' )k Pk (cos (r, r')) 
I r  - r I r k r 

Thus the electric dipole field falls off as l /r, the magnetic dipole and electric 

quadrupole field as I /r2 , etc. Hence the fields of the higher multi poles 
become relatively larger as we go nearer the nucleus. Now there are electrons 
around the nucleus, and their reactions to the field te l l  us the character 
of the radiation. In the actual calculation it is found more convenient to 
use the expansion 

where 

'" - <n·r ' )  e c = I P,(cos (n, r'))f, (r') 
I 

i ' J-; ( l'r ) ( vr )' 
fz(r) = (21 + 1 ) - J1 + 1 12 - � -J ; 2 c c 

instead of the power-series expansion. 
The fields of higher multipoles become increasingly more complicated , 

and we shall not go into their calculation . 
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9 ENERGY OF A NEARLY STATIC DISTRIBUTION OF CHARGE 

45 

In this calculation we take j to be static. If we took e to be static also, 
then we would just get the electrostatic formula. Hence we ease the condition 
and say that e varies with t but only in such a way that j i s  static . We want 
to calculate 

E = _1_f dr(E2 + H2) 
Sn 

under this condition.  We take the potentials <p, A such that 

1 oA E = - V <p - - ­
c at 

H = V x A  
V · A = 0 

Then as in Section 6 we have 

E I = - v f e(r') dr' 
L 

I r  - r' I  

1 o2A . - -- - L1A = 4nJJ. c2 ot2 
• _ • 1 V f V ' · j(r') dr' 

l.L - J + -4 I ' I  n r - r 
oA 

Now since j is static, j.l is also, and hence A must be static. That is, Tt = 0, 
and therefore f . ( ') A = dr' h r 

I r - r' I  

EE = _l_ f E2 dr 
S n  

= -1-f dr V  <p · V q; 
Sn 

By partial integration we obtain 

EE = _ _ l_ f dr <p L1 <p 
Sn 

e(r') } {Lt f dr" e(r") } 
I r - r' I  I r  - r" I 
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and since 

we have finally 

Next 
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1 .d --- = -4n <5(r - r") 
Ir - r" I 

EE = _!__f drf dr' e(r') e(r) 
2 Ir - r' I 

EH = -1-f H2 dr Sn 
= -1-f (V x A) · (V x A) dr Sn 

(9 . 1) 

= _I f dr[( oAz _ oAy )2 + ( oAz _ oA:)2 + ( oAJ1 _ 
0Az)2] 

8n a y oz oz ox ox oy 
If we expand the integrand and then integrate partially, we get 

EH = - _l_f dr [Az iJ2Az - Ay 
iJ2Az - Az iJ2Ay + Ay o2Ay 8n oy2 oz oy oz oy oz2 

+ Az o2�z - Az o2Az - Az a2Az 
+ Az o2Az 

oz ox oz ox oz ox2 

+ A o2Ay - Az a2Ay - AJ1 
o2Az 

+ Az o2Ax J y 
ox2 oy ox oy ox oy2 

= --1 I dr [A . .dA - A . v (V . A)] Sn 
Now V · A = 0, so 

EH = _ _ 1 I dr [{I dr' h (r') } . {.d I dr" j.L (r") }] Sn Ir - r' I I r  - r" I 

= _!__f drf dr' i.i(r') .  i.i(r) 
2 Ir - r' I  (9.2) 

oe If ot = 0 so that v .  j = 0, then j.1 = j, and we obtain the familiar 
expression for the energy of a magnetic field due to steady currents 

EH = _!__f drf dr' j(r') . j(r) 
2 Ir - r' I 
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However, if oe =F 0, then we get a more complicated expression. We ot 
have 

where 

. 
. 

1 v J.i = J + - x 4n 

x = dr" ---I V" · J0(r") 
l r - r" I 

which by partial integration gives 

X = - f dr" j(r") . V" 1 
I r - r" I 

V x = f dr" (j(r") · V") V " 1 
I r  - r" I 

From (9 .2) we get 

EH = .!._f drf dr' 
1 { j(r) + -1 v x } · {j(r') + _I V' x(r')} 2 I r - r' I  4n 4n 

where 

Now 

where 

I I 1 = - 11 + - 12 + /3 
2 4n 32n2 

/1 = I drf dr' j(r) . j(r') 
Ir - r' I 

12 = f drf dr' j(r') . v x(r) 
Ir - r' I 

/3 = I drf dr' v x(r) . V' x(r') 
Ir - r' I 

12 = f drf dr' f dr" (j(r") · V") j(r') · V" 1 
Ir - r' I Ir - r" I 

= J dr' J dr" j(r') · F(r' - r") · j(r") 

F(r' - r") = f dr V" V" 1 
Ir - r' I Ir - r" I 
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This tensor function is the unique solution of the differential equation 

1 L1F(r) = -4n V V -
r 

which vanishes as r -+  oo .  Introducing the unit tensor (1 0 0) 
1 = 0 1 0 0 0 1 

we may reexpress the right hand side of this equation in the form 

L1F (r) = -4n 3 - - - - - lo(r) 
[ rr 1 4:r J ,s r3 3 

the delta function term being included so that we obtain 

1 
L1 tr F = -4n L1 - = (-4n)2 o(r) 

r 
We try a solution of the form 

1 rr F(r) = a - + b -
r r3 

By straightforward computation we find 

L1 F(r) = -4nalc5(r) + 2b _!_ - 6b � - 4:r b lo(r) 
r3 , s  3 

whence it follows that 
a =  - b  = - 2:r 

and hence 

12 = -2nf dr' f dr" {j(r') . j(r") - j(r')  . (r' - r") j(r") . (r' - r")} 
I r ' - r" I  I r' - r" l 3 

/3 may be written in the form 

/3 = f drf dr 'f dr"f dr" ' j(r") · 
V" j(r" ' · V' ") V" __ I _ · V " '  __ I_ 
Ir - r' I  I r - r" I  I r' - r" ' I 

= J dr" J dr" ' j(r") · G(r" - r"') · j(r'") 

where 

G(r" - r'") = f drf dr' V" V" '  [ 1 (v" 1 
I r - r' I  I r - r" I  

. V'"  1 )] 
I r' - r' " I  
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Now, applying the Laplacian operator and integrating by parts, we get 

L1 "G(r" - r"') = - 4nf dr' V " V ' " (v" I . V ' "  I ) 
I r" - r' I I r' - r" ' I  

= - 4nf dr' V " V"' (v' I . V ' I ) 
I r" - r' I  I r ' - r" ' I 

= - 4nf dr' V" V " '  ( I ' I ) 
I r" - r' I A I r' - r' " I  

= - (4n) 2 V" V'" I 
I r" - r'" I 

= - 4n L'.J "F(r" - r" ') 
Since both F(r) and G(r) vanish as r � oo it follows that G(r) = - 4nF(r) 
and hence 

/3 = - 4nl2 

Thus collecting terms we finally get 
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E = - dr' d " + (9 3) 
1 f f {j(r') · j(r") j(r') · (r' - r") j(r') · (r' - r")} 

H 4 r 
I 

' " I I ' " J 3  
. r - r r - r 

This expression applied to electrons i s  known as Brei t ' s  Hamiltonian. 

For moving discrete charges, j � � e so that 
c 

EH vi - - -
EE c2 

and hence for slow electrons , the main part of the interaction is electrostatic. 

10 LIENARD-WIECHERT POINT POTENTIALS 

In Section 7 we saw how rp and \jl can be obtained from e and j . Suppose 
the charge is concentrated in a domain of dimension d, small compared 
to all other distances involved in the problem, and let the charge move 

along a certain trajectory, r0(t) . For such a case, the method developed so 
far is clumsy, as integrations over all space are taken when the only part 
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which gives anything is concentrated in a small volume. We can represent 
the charge and current densities by means of delta functions, thus 

e(r, t) = e b(r - r0(t)) 

j(r, t) = e v(t) 
b(r - r0(t)) 

c 

where v(t) = t0(t) , the dot denoting differentiation with respect to t. It 

i s  easily verified that this representation satisfies the charge conservation 
law : 

. I oe(r, t) e � � . 
V • J(r, t) + - = - [v(t) · V u{r - r0(t)) - V u(r - r0(t)) · r0(t) ] 

c at c 
= 0 

Substituting the expression for e into (7. 7) we obtain f ( ( I r r' I)) b r' - r0 t - -
<p(r, t) = e 

I r  - r' I c 
dr' 

The integrand contributes to the integral only at 

r' = roCtret(r, t)) 
where fret is the " retarded time," defined implicitly by the equation 

( ) 
Ir - roCtret(r, t)) I fret r, t = t - ------

c 
Therefore we may write 

where 

<p(r, t) = b(r") dr" e f c(r') 
Ir - roCtret(r, t)) I o(r") 

r" = r' _ r. (i - I r � r' I) 
In order to calculate the Jacobian o(r')/o(r") we first compute the tensor 

v (t _ Ir - r' I ) 
V' r" = 1 - r - r' c 

I r  - r ' I  c 
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and then take its determinant. The result is 

whence finally 

v (t _ Ir - r' I ) 
o(r") = I _ r - r' c 
o(r') Ir - r' I  c 

<p = 

5 1  

(10 . 1 )  

where R = r - r0 and vR is the component of  velocity in  the direction 

of R :  

In exactly the same way we get 

"' = 

R 
VR = - · V  

R 

v e ­c 
R ( I - ":) n • 

( 10.2) 

( 10. 1 )  and ( 10.2) are called the Lienard-Wichert potentials. They are 
rigorous for idealized point charges. Their validity when the charge is 

spread over a domain of dimension d may be determined as follows . The 

retarded t ime for different points of the charge distribution now varies 
by an amount L1 tret ,..,, d/c. Also R varies by an amount L1R ,..,, d. In order 

that these variations have negl igible effect on ( 1 0. 1 )  and ( 10.2) we must 

have 

d 4: R , 

etc. 

l v l d I -- 4: 2 ' c 
l \i l d2 -- 4: I 

c3 

As long as these conditions are satisfied, the above expressions for the 

potentials hold . It is not necessary that the charge be microscopic as in the 

case of electrons or nuclei ; the formulae may be applied to macroscopic 

charges, such as a charged pith ball . For electrons we usually consider 

4* 

ez 
d - -­

mc2 
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We can see qualitatively why an approaching charge gives a larger 
field than a receding one at the same distance. The retarded time at A is 
later than that at B and so for the approaching charge, A is effectively 

B B 

\ �A ft/ 
\ / 
\ / 
\ // 
v 

p 
further away from B, while for the receding charge , A is effectively nearer B 
than the actual distance. This means that the approaching charge has the 
effect of a larger charge , and the receding charge a smaller one. Thus the 
former gives a larger field at P than the latter . 

If we apply this idea to nebulae, we must have more nebulae to give 
the observed intensity when they are receding than when they are at rest 
with respect to the earth . 

1 1  FIELD OF A UNIFORl\.Il, Y MOVING POINT CHARGE 

Let a charge e move with uniform velocity, v, along the x axis . We want 
to find the field produced by it at a point P at a perpendicular distance , b, 

b 

p 
from the l ine of motion. Let us calculate the field at P at a time t when the 
charge i s  at A. We shall denote retarded quantities by a prime. Then 

R'2 = c2(t - t')2 = x'2 + b2 = v2 (t0 - t ')2 + b2 ( 1 1 . 1 )  
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where 10 i s  the time when the charge reaches B, and 

v� x' v 

c R' c 
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( 1 1 .2) 

By means of these equations, we can calculate the Lienard-Wiechert 
potentials in terms of instantaneous quantities .  From ( 1 1 . 1 ) we have 

The solution of this quadratic for t' gives 

t
' 

= c2t - v2to ± . ..j c2v2(to - 1)2 + (c2 - v2) b2 

(c2 - v2) 

where we must take the negative sign to obtain the retarded time. This 
gives 

and 

Hence 

and 

x' c2(t0 - t) + -J c2v2(t0 - t)2 + (c2 - v2) b2 - -
v (c2 - v2) 

R' v2 (t0 - t) + -J c2v2(t0 - t)2 + (c2 - v2) b2 - -
c (c2 - v2) 

R' - !:.._ x' = R* = -J v2(t0 - 1)2 + ( 1 - v2 /c2) b2 
c 

e - ----
R, v ' 

- - x c 
e 

R* 

\jl = � 
cR* 

( 1 1 .3) 

(1 1 .4) 

(1 1 .5) 
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If x, y, z are the Cartesian coordinates of P, then 

X = Vto 
y2 + z2 = b2 

if we choose the origin of time so that the charge is  at the origin when 

t = 0. This gives 

R* = J (x - vt)2 + ( l - v2/c2) (y2 + z2) 

We can now obtain the fields by simple differentiation. 

i a+ E = - - - - V <p c at 
ev v e - - -- - (x - vt) + -- {(x - vt) a" 

R*J c2 R*J  

where a" ' ay , az are unit vectors along the x ,  y ,  z directions respectively. 

Thus 

Next 

E = -- 1 - -eR ( v2 ) 
R* J c2 

H = V x \jt  

= - [� x v -e ] 
c R* 

( l  l .6) 

v = - x E ( l l .7) 
c 

since _!_ o\jt 
and v are parallel .  We see that though the radiation is sent out c at 

from the retarded position, due to interference, the lines of electric force 

point from the instantaneous position of the charge. We also see that the 
field is not spherically symmetric as in the static case, but is stronger in 

the direction perpendicular to the l ine of motion than along it. In other 

words, the lines of force are more dense in the equatorial plane than in 



MAXWELL'S THEORY 

the polar directions .  In the equatorial plane 

e 
I El =

J --;=l=-=v2=; c
=2=-(

-
y
-2 _+_z_2 ) 

and in the polar direction (at t = 0) 

IE I = - 1 - -
e ( v2 ) 

x2 c2 
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Thus vor v very close to c, almost all of the electric field i s  in the equatorial 
plane, and E, H and v will be perpendicular to each other so that the effect 
of the passage of a charge close by has practically the same effect as a 
pulse of radiation. We shall apply this idea to find how the ionizing power 
of particles varies with the velocity. Consider the case where a charged 
particle such as an <X-particle or an electron passes by an atom. Most of 
the effect will be due to the transverse electric field and, of this ,  only the 
Fourier component which is in resonance with the atomic electron will be 
effective. Thus, taking the Fourier component, we have 

+ oo  

f e - 1tit  dt 
= e( I - /J2) b 

{(x - vt)2 + ( l - /P) b2 } 3 /2 
- oo  

where {J = v/c and b is the distance of the atom from the line of motion 
of the ionizing particle .  Let T = t - x/v . Then 

Let 

- 00 

+ oo  - 1 � .. a f - - e e v 
ab 

VT 
--;===-- = (] 
J1 - fi2  b 

- oo  

e- lyT d'f 

J 1 - {12 bv = I 
v 
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Then 

LECTURES ON ELECTRODYNAMICS 

+ oo  

EI = _ !_ e - 1  : V  !____ I cos 1<1 da 
v ob .J a2 + 1 

- (() 

since the part with sin la integrates to zero . Similarly, from 

we get 

Let 

+ oo  

I (x - vt) e - lvt dt £1v1 = e(l - {J2) 
{(x - vt)2 + (1 - /J2) b2}3/2 

- oo  

+ oo  

I cos la da 
�==- = F(l) .j a2 + I 

- oo  

This is actually a constant times the Hankel function of zero order, and 
we have the asymptotic behaviour 

and hence 

e - ' 

F(l) - .JI 
for l � I 

F(l) - In l for I �  1 
_ ,  

IEI I ,  IE11 I - j, for b � 
v 

v J 1 - {12 

IEl l - _l_ } 
IE1j l  - 1: 1 

for b �  v 

v .J 1 - /32 

Thus we see that most of the ionization occurs in the region l < I ,  and we 
may take l = I as the range within which the ionizations occur. Taking 
v = 1 0 1 5  Hz. we have, for typical IX-particles, 

v 109 
--;=== - -- ,..._, 10-6  cm 
'JI .J 1 - p2 10 1  5 
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while for electrons of 1 01 0  MeV 

and 

5 x 1 05 

10 1 0  
1 - ----

2 x 104 

v 3 x 1 0 1 0  x 2 x 1 04 
--:====- ,..., ,..., 6 mm 
v "l 1  - {32 1 0 1 s  

This i s  a very large value, but i t  i s  thought that electrons of such high 
energies do not occur and that most of these high energy particles are 
mesons . If this i s  the case, the range would be reduced by a factor of 
about 200. 

We shall now give a simpler derivation of the potential s of a uniformly 
moving charged particle .  To do this, we go back to the original differential 
equations for the potentials 

1 a2cp Llcp - - -- = - 4ne (1 1 .8)  
c2 ot2  

1 a2 w v 
Ll \jl  - - -- = - 4ne -

c2 ot2 c 
(1 1 .9) 

and make a transformation to a coordinate system (x' , y' , z'
) i n  which f! 

i s  static. Let us again consider the particle to be moving along the x-axis .  If 

then 
x' = x - vt , y' = y , z' = z ,  t '  = t 

a ot' a ox' o a o - = - - + -- -- = - - V --
ot ot ot' o t  ox' ot' ox' 

and since if f! is static in the primed system, <p will also be static in this 
system, ( 1 1 . 8) becomes 

or 

Let 

v2 a2cp Ll 'cp - - -- = - 4ne 
c2 ox' 2  

( 1  _ {32) -- + __ + __ cp = - 4ne { 02 02 02 } 
ox' 2 oy' 2 oz' 2 

' I I  X y" = y' , x = ' 
� 1 - f32 

z' '  = z' 
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Then 

4ne" (1 1 . 10) 
Ji - {J2 

where 

is the charge density in the new coordinates x", y", z". Similarly, ( 1 1 .9) 
can be transformed into 

- + - + - + = - -{ 02 02 02 } 4ne" v 

ox"2 oy"2 oz"2 J 1 - /P c 
( 1 1 . 1 1 ) 

For a point charge, the solutions of these equations are, for the case of 

charge e at the origin 
e <p = --:-:===---".====== J 1 - {:12 ..j x"2 + y"2 + z"2 

e 
- --=======================--

.. ../ (x - vt)2 + ( 1  - {J2) (y2 + z2) 

v "' = - <p 
c 

and these are exactly the same as ( 1 1 .4) and ( 1 1 . 5) . 

The transformation we used above is actually a part of the Lorentz 

transformation 

x" = x - vt 

..j 1 - f12 
' y" = y ,  z" = z ,  

v t - - x 
c2 t" = ---:-::== 

..j 1 - p2 

We did not use the transformation of the time but used instead 

v . 
e - -1 

" c ' 1  p2 ( . . v ) (! = . = \/ - (! SinCCJ = -(! 
J 1 - p2 c 

We shall consider these transformations more fully when we discuss the 

special theory of relativity. 
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1 2  FIELD OF AN ACCELERATED POINT CHARGE 
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Suppose a charged particle describes the trajectory AB. We want to find 

the field due to it at point P(r) at time t . 

P (r) 
Let the charge be at r 0 at time t and at r' at the retarded time t' = t - R' I c. 

Also let n = R/R, and p = v/c. Then 

and 

<p = [ e ] 
R( l + P · n) ret 

"1 = [ ep ] R(l + P · n) rc t 
i av 

E = - V <p - - - , H = V x \jl  c ot 
These differentiations are made complicated by the fact that the potentials 

are retarded. We shall denote by primes all retarded quantities .  We have 

and 

Now 

Therefore 

V o<p 
V ,  V<p = t ' = cons t'P + - t 

ot' 

1 , 1 oR' 
V 

, 
Vt'  = - - V, , _ tR - - -- t 

c - cons c ot' 

V RI 
R' , t ' = const = - - = - D  

oR' P' , 
-- = c · n 
ot' 

R 

n' 
Vt' = -----

c(l + P' · n') 
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Further 
e 

Vr ' = cons t'P = Vr ' = const ___ _ 
R' + P' · R' 

e(n' + P') = + -----(R' + P' . R')2 

_
o<p = - e {cP' . n' + P . R' + c{3'2} 
ot' (R' + P' · R')2 

where a dot denotes differentiation with respect to t' . Thus 

Also 

But 

e(n' + P') v 'P = + ----=---­

(1 + P' . n')2 R'2 
en' (P' · n' + ( p' /c) · R' + {3'2) 

(1 + P' . n')3 R'2 

a+ a+ ot' 

at ot' ot 

at '  1 oR' at'  - = 1 - - - -
ot c at' at  

which yields 
ot' 1 - = ---
at 1 + P' · n' 

and since 
o\jl = P' 

ocp + <pp' 

we have 
ot' ot' 

1 a+ - 1 { ep ' (A' . n' + P' . R' + {3'2) 
; ar - ( 1  + P' · n') 

-
(R' + P' · R')2 16 7 

eP' /c } + 
R' + P' · R' 

Thus, finally, on collecting the terms 

E - [ { n + p n(p . D + fJ2) p(p . D + {J2) - - e (1 + p . n)2 R2 - ( 1  + p . n)3 R2 
-

(1 + p . n)3 R2 
(n + p) n · p p( l + p · n) }] -

(1 + P · n)3 cR + ( 1  + P · n)3 cR re t 

= [- e { ( 1 - {J2) (n + P) + p( l + p · n) - n · p (n + p) }] 
(1 + D • P)3 R2 ( 1 + D • IJ)3 cR r e t  
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Now to find H we have 

v x v = v t '  x v + v 1 '  x c\jl ct '  
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where the subscript t ' means that t ' is to be kept constant for this differen­
tiation. 

Now 

Vr ,  x (p'q;) = - P' x V'r · cp 
en' x P' - ------

( 1  + P' . n')2 R'2 [v I av] n' x P' O<p n' x p'qi t X - = - + -----ct' c( l + P' · n') ot' c( l + P' · n') 

- - � I • n' + en' x R' ( 
-

( 1  + P' . n')3 R' 2 
p P' � R' + {3'2) + en' x �' 

c( l + P' · n')2 R' 

Therefore 

H = [e { [n x PJ ( l  - {32) + [n x p] ( l + P · n) - [n x p] n · p }] 
( 1  + p · n)3 R2 (I + n · p)3 cR ret 

and comparing this with E we see that H = - [n X Elre t 

Thus H is always perpendicular to E and to nret . The first part of E is 
nearly paral lel to n' for ordinary velocities , and the second part is exactly 
perpendicular to n' which can be seen immediately by taking a scalar 
product with n' . The first term, which falls off as 1 / R'2 , gives the quasi­
static field , while the second falls off as I /  R' and gives the wave zone field . 
The ratio of the magnitudes of the two terms is  

v 'R' 

c2 

and this has a simple meaning since 

, I r - r' I 1 '( ') v ' 
( ') 2  I t - t = = - r - r0 + v t - t + - t - t + · · · 

c c 2 ' 
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and the condition that this series converge rapidly i s  

v'R' -- � I  
c2 

Thus if this condition holds, we have 

E = [- e { (I - p2) (n + II) }] , , 
( I + n . 11)3 R2 t ' = t - i r - ro +:  < t - t > 1  

We shall show that this expression i s  the same as ( 1 1 .6) for the field o f  a 

uniformly moving charge . To the approximation we are making, II i s  

constant, and we have 

R'(ll + n') = R = Rn 
Thus our proof will be complete if we can show that 

(1 + n' . 11)3 R'3 = R*3 

From the above relation we get 

R'('{J2 + n' · II) = Rn · II 
R'(l + n' 

· II) = Rn · II + R'(I - {Jl) 
Now 

R· = r ;!)' + [ R - (Y)PJ(l _ P'f' 
and moreover 

= R .JI  - /J2 + (n · 11)2 

t - t' = R - 11( t - t') 
c 

which may be solved to yield 

Therefore 

Hence 

t - t ' = 
R -n · II + .J (n · 11)2 + ( I  - {12) 
c I _ {12 

R' = (t - t') c = - R(n . II) + R* 
I - {12 

R'( I + n' · II) = R* 
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and we have shown that 

E = eR(l - {P) 
R*3 

We have seen that for the general case 

H = - n' x E 

This reduces to the expression 

H = P x E  

when the velocity is constant . The proof i s  left as an exerci se. 

EXERCISE 1 5  Show that for the case of uniform motion 

n' x R = -P X R 

1 3  RATE OF RADIATION OF ENERGY FROM AN ACCELERATED 

POINT CHARGE 
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We have seen that the general expression of E for a charged particle can 
be considered as a sum of two terms :  The first, which is the same as that 
for a uniform velocity, and the second, which depends on the acceleration. 
For the latter part, E, H and h are perpendicular to each other, and 
!E l  = IH I ,  and this  i s  the field of the electromagnetic  waves radiated by 
the particle . Thus 

S C CD 
2 = - E x H = - - E 

4n 4n 

S = [- ne2 { v2(1  + p · n)2 - 2(n · v) (I + p · n) (n · v + p · v) 
4nc3 ( 1  + n · p)6 R2 

+ (n · v)2 (I + 2n · p + /P)}] 
(I + n · p)6 R2 re t .  

= 
[- �{v2(1 + P · n)2 - 2(n · v) ( l  + P · n) (P · v) - (n · v)2 ( 1 - {P) }] 

4nc3 ( I  + n · P)6 R2 rct .  
At  first sight it seems that the total rate of radiation may be obtained by 
integrating S over a sphere with the center at the retarded position of the 
charge. However, this procedure does not give the correct result .  To see 
why this is so, let us look at the problem in more detail . Suppose AB i s  
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the trajectory of the particle .  At time t, let its position be Q. The radiation 
which arrives at P 1 at time t 1 came from the retarded position Q' and the 
radiation emitted at Q' lies on the surface of the sphere, Si , with center 
at Q' and radius R1 = Q' P 1 •  If we consider another point, P2 , the radiation 
there at time t came from Q" and the radiation emitted at Q" lies on the 

0 "1-----�'--------i P2 A 
S; 

surface of the sphere, S 2 ,  with center at Q" and radius R2 = Q" P 2 • It 
is  clear that in  general the energy flowing across S1 will not be equal to 
that flowing across S2 . This i s  why we cannot obtain the rate of radiation 
by considering the flow of S energy across a fixed sphere. The correct 
method is to consider the spheres S1 and S2 to move outward with the 
radiation at velocity c. Then the energy of radiation enclosed within S 1 
and Si, wil l  be constant, and the rate of radiation is this energy divided 
by the time taken to radiate it . Now the energy within S1 and S2 , when 
their radii ditf er by dR, is 

dE = R2 dR J dn W(l + p . n) 

- = c R2 dfi(l  + p · n) W 
dE f 
dt 

= J R2 dfi S · ( - n) (I  + p · n) 
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Since for IE I - IH I 

W = _I_ (E2 + H2) = ( - n) . S 
8n c 

Putting in the value for S, we have 

dE = �f df! {v1 ( l + P · n)2  - 2(n · v) ( l + P · n) (P · v) - (n · v) 2(1 - /J2)} 
dt 4nc3 ( 1  + n · p) 5  

( 1 3 . 1 ) 

This i s  the correct expression, since it agrees with the formula derived 
from the method of special relativity. 

EXERCISE 16 Show why the factor (1 + p · n) has to be included in the integral over 
t he angles of the rate of radiation. 

Let us consider some special cases . First, if p is very small , then 

dE = �sdf! {v 2 - (n ·  v)2 }  dt 4:ic3 
If we take the polar axis along n, then 

- = -- dr:p d(cos 0) ( v 2 - cos2 Ov 2) dE e2 I I dt 4.nc3 
') 2 
_e . 2 --= -- v 3c3 ( 1 3 .2) 

We see that the angular distribution is sin2 (} so that it is a dipole radiation.  Thus, the 
condition A � dfor the validity of dipole radiation is equivalent to the condition v � c. 
For a charge, e, oscillating harmonically we have 

x = -w2x 
so that dE dt 

= -w2a cos wt 

2w4e 2a2 
--3- cos2 wt 

3 c 

3c3 ( 1 3 .3)  

wa 1 . 
EXERCISE 1 7  If - = - ,  then v ,..., c at the center of o scillat 1on . Compare the average 

c 3 

rates of radiation calculated from the exact formula ( 1 3 . 1 )  and the approximate one 

( 1 3 .3) .  
The total energy of the oscillator is 

H = ---
2 
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Hence the fraction of its energy radiated in one cycle is 

T dE 2 2n w4e2a2 ----H dt ma2w2 (/) 3c3 

4ne2w 

3mc3 

8n2e2v 

3mc3 

where v = 1 /T. This fraction is of order 1 for 
mc3 

v ,...., __ 

e 2 
for electrons 

mc3 1 
2 

lie 
v ,_, __ ,...., _ me -

e 2  Ii e 2  

1 1 ,..._, _ X - X 1 37 MeV Ii 2 
70 MeV ,..._, __ _ Ii 

(1 3 .4) 

3mc3 v 
Let v0 = 

2 2 • Then for - � 1 ,  the damping factor is negligible and the effect of 
Sn e Vo 

radiation need not be considered. We see that for electrons this condition is usually 

satisfied . 

Next consider the case v perpendicular to v . Let v be along the z axis and v along the 

x axis. Then putting y = cos 0, we have 

2n + l  dE e 2  I I { v 2(1 - {Jy)2 - v 2(l - y2) (1 - {Jl) cos2 q;i} 
- = -- dq;i dy ---------------dt 4nc3 (1 - {Jy)5 

0 - 1  
( 1 3 .5)  

We see that there is a great concentration of radiation in the forward direction ; the 

ratio of energy radiated in the forward direction to that radiated backward is ( l + fJ )3 
1 - {J 

EXERCISE 1 8  Show that the rate of radiation from a charge e, moving in a circle of 
radius a, with constant angular velocity w, is given by 

dE 2e 2 

dt = 3c3 
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1 4  APPLICATION TO A SIMPLE THEORY O F  BREMSSTRAHLUNG 

An electron moving with uniform velocity v comes near an atom and, 
while it is within the field of force, the electron is accelerated, and it then 
goes away with uniform velocity, v' . During the interval of time -r when 

the electron is accelerated, it radiates electromagnetic waves, and we want 
to calculate the amount of energy it radiates . Now 

a 7: "' -
v 

where a is the size of the atom. From Thomas-Fermi model of the atom 

1 3h2 
a � · 

"' 8 to 2 x 10-9  cm 
me2z1 t3 

Since v = 109 cm/sec, -r ,..., 1 0- 1 8  sec. If vr � I ,  where v is the frequency 
of the radiated wave, we can derive a simple, general result. We shall deal 
only with this case. We can write 

I . 3h2v 
V'l' "' ---­

me2zt ! 3V  

2hv l . 3 he v 
= -- X X - -

mv2 4nZ1 13 e2 c 

2hv 14 v 
� -- X -- X -

mv2 Z113 c 
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N 2hv 
· h f 

· 
f h d

. 
d . . l ow -- IS t e raction o t e energy ra iate m a smg e quantum. mv2 

Hence, our condition is that the fraction of the energy radiated be small , 
or another way in which the condition may be satisfied is  to have v � c . 
We shall assume this condition to hold.  We shall only consider the wave 
zone field since this is the part which corresponds to the radiated wave . 

Making a Fourier analysis we have 

+ oo  
E = I Ev e2nht dv 

- oo  
+ oo  

Ev = I Ee - 2ni vt dt 
- oo  

+ 00 
e I dt{ • ( ' ) }  - 2 ."t i rt = -- v - n n · v e rc2 

- oo  

Since v has non-zer9 value only in the short interval r, we can write 

e Ev = - {Liv - n(n · Liv) }  
rc2 

( 1 4. 1 )  

when w e  take the collision t o  occur a t  t = 0 .  The total radiation, R ,  I S  
given by 

+ oo  

R = I dtf df!. 
cr2 £2 
4n 

- oo  
+ oo  + oo  + cc  

= f dfl �� f dt { f E,e"''' dv} { f E, .e2'" "  dv '} 
- 00 - co  - oc  

The integral over t giv es a delta function, and t herefore, si nce E_ v  = Ev , 
we have 

R = J Rv dv 
where 

0 

( 1 4 .2) 
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If we choose the polar axis along Jv, we may write 

!Jv - n(n · Jv) I  = IL1vl  sin () 

2 :t 

Rv = � J dcpf d(cos 0) 1J vj 2 ( I  - cos2 O) 
2nc3 

0 
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= 4e2 
IL1v l 2 

3c3 
(14. 3) 

Thus in the region of applicabi lity, the intensity distribution function is  
. . mv2 

constant , and smce it must fall to zero for v ,...,,, -- , the intensity dis-
tribution curve has the following shape 2/z 

R,, t-----------------.-- - ---. 

\ 
I 
I 
I · 
I 

0'-----------------''-------'------ 'V 'IT v "' mv2/2h 

The number of quanta emitted is given by 

Nv dv = Rv dv hv 
4e2 Jv 2 dv 

- - -

3hc c2 v 

Thus a large number of long wave-length quanta come off. 
Bremsstrahlung may be looked upon as due to " shaking off" of quanta 

from the field of an electron which i s  given a sudden jerk. The fields of 
the electron before and after the acceleration are different, and, if this 
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change occurs in a time, T, the Fourier components of the original field 
with 1 /v � T, cannot adjust themselves to the change within this time, 
and the difference in the components of the two fields comes off as radiation. 
The vector potential of the particle before collision is 

\jl = ev 
er 

remembering that we are making the assumption v � c. After the collision, 
it is 

\jl' 
= 

ev' 
er 

We make the assumption that the collision time is  very short compared 
to the period of the radiated wave. Then we can take r just before and 
just after the collision to be the same. Thus the change in the vector 
potential is 

Making a space Fourier analysis of this, we have 

Ll \jl = � f Ek.i.e2nik . rLl'!Jliu. dk 

where ;. goes from I to 3 and 

Ll '!JlkJ. = J (LJ \jl . Ek;.) e - 2nlk · r  dr 
oo + 1  2 n  

- e(Llv; •.,) f dr f dµ f d<p re - "1•'" 
0 - 1  0 

2e(Ll v • Ek;.) f . (l 
k ) d - sm n r r 

ck 
0 

C() 
e(Ll v · Ek;.) f . 

d = sm x x 
nck2 

0 

where x = 2nkr 
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The value of the integral in this form is indeterminate, but we can use a 
damping factor e_ax since 

00 f e-ax sin x dx = __ l _  
a2 + 1 0 

and take the limit a -+ 0.  We get 

and hence 

and 

00 J sin x dx = 1 
0 

The meaning of L1 \j1 can be understood better by considering the follow­
ing analogy. A harmonic oscillator is  undergoing forced oscillation with 
an amplitude A .  Suddenly the magnitude of the external force is altered 
so that the amplitude of the forced oscillation is A' .  The position of the 
oscillator at the instant when the change occurs does not correspond to 
that due to the new forced oscillation alone, and the difference is taken 
care of by the excitation of free oscillation of amplitude equal to the 
corresponding positions of the oscillator under the influence of the old 
and new forced oscillations at the instant when the change occurs .  L1 \jl  
corresponds t o  the amplitude of the free oscillation, and to obtain the 
vector potential of the radiation field, we must multiply each Fourier 
component by the corresponding time factor which we may conveniently 
take as 

cos (2nkct) 
Thus 

From this we can calculate the fields. Now we have seen m Section 7 

that in the wave zone field, the contribution to E from <p is a component 

parallel to the propagation vector which just cancels off the parallel part 
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coming from "1 and makes E perpendicular to k. Thus we need not calculate 
this part ; we can get E by taking just the part from \j1 which is  perpendicular 
to k .  Thus 

Next 

- - Li -- - Ek..i.e cos n ct E - "'""' e [J f 2"'ik · r L1v . Ek;. (2 k ) dk 
,1. = 1 , 2  nc2 ot k2 

H = v x L - Ek;.e n r k..1. cos (2nkct) dk 
e f 2 tk · Liv · E 

;. =  1 , 2 , 3  nc k2 

= L - [k x Ek;.] e n r kA cos (2nkct) dk 2ei f 2 tk · Li v . E 
). =  1 , 2 c k 2 

Using the fact that 

we now get f E2 d "'""' "'""' 4e2 f d f dk' 2 "'1k ' · r L.Jv . Ek '). ' . ' r = Li Li -- r Ek '..1.'e · sm (2nk ct) 
..1. =  1 , 2 · ). ' = 1 . 2  c1 k' 

f dk 2itlk · r  Jv · E -k..1. · x E -k;e · sm (2ikct) . 
k 

= L L 4el f dk' Liv . Ek'..1.' sin (2nk'ct)f dk Liv . E -k-< 
;.= 1 , 2 ..1. ' = 1 , 2  c1 

k' k 
x sin (2.iikct) c5;., p c5(k + k') 

= L -� dk sm2 (2nkct) 
4e2 f (Liv · Ek;.)2 

• 

.< =  1 , 2 c- k2 fu1 dr = 2: L 
.< =  1 , 2  ). ' =  1 , 2  

- 4e2 f drf dk' [k' ] 2ntk ' · r Li v . Ek '). '  
2 

X Ek '). '  e c k'2 
x cos (2nk' ct) 

x f dk[k x . _.,] e2"'" ° '  ,1v �:-"·'cos (hkct) "'""' f 4e2 f LJ V • Ek;. = Li - dk cos2 (2nkct) 
J. = 1 , 2  c2 k2 
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Hence the energy radiated i s  

R = -1 f (E2 + H2) dr 
8:n: 

_ e2 " I (Liv · Ek;)2 - -- L dk ---
2nc2 A =  1 , 2  k2 

2Jt 

= � ILl v l 2 f dcpf sin () d() sin2 ef dv 
2:rc2 c 

0 
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where polar coordinates with the polar axis along Liv  have been used. 

This gives 

R = - (Llv)2 dv 4e2 I 3c3 

The integral over v appears to give an infinite result ,  but o ur method is 
only valid for v � 1 /r, where r is the collision time . Thus our method is 

not val id to give the total energy radiated , but we can get the energy \jl 

radiated at the frequency v in the range where v satisfies the above condition .  

The result 

R = 4e2 (Av)2 
v 3c3 

agrees with the value obtained from the first method . 
If  we consider the scatterer to be an impenetrable sphere of radius a, 

the collision time is an instant, and so o ur calculation holds for all v .  From 

quantum theoretical arguments, Rv = 0 for v > E0/h where Eo is the initial 
energy of the electron . Hence 

= - 1Llvl 2dv for 0 < v < E0 /h 
R,,dv 3c3 
{ 4e2 

= 0 for v > E0 /h 

Now the cross-section da for scattering in solid angle d!! is, for a sol id 

sphere, 

a2 da = - d!! 
4 

By the term cross-sect ion,  we mean that if N electrons are incident on the 
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sphere per unit area (normal to the direction of the beam) per unit time, 
then the number scattered per unit time into the solid angle dil is  N da. 

d.0. 

Thus the number of particles arriving  at an element of area a2 sin (} d(} d<p d is 

N a2 sin (} cos (} d(} dcp 

and since we have the relation 

this number is equal to 
y = n - W  

N a2 sin y dy dcp 4 
These particles are scattered into the solid angle 

dil = sin y dy dcp 

and hence we have derived the relation 

and 

Now 

a2 
da = - dil 4 

a = na2 

(.dv)2 = v2 + v'2 - 2vv' cos y 
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which for elastic scattering reduces to 

(Llv)2 = 2v2(1 - cos y) 

Let us introduce a quantity dw dv which is the cross-section da multiplied 
by the energy radiated in frequency v ;  that is 

a2 4e2 
dw (il, v) dv = - dil - 2v2(1 - cos y) dv 

4 3c3 
Integrating over n we get 

Let 

8 2 2 2 
( ) d 

ne a v 
d w v v = v 3c3 

Eo /h J w(v) dv 

.:J = _o __ _ 

Eo 

- ----

8e2 v2 
= na2 x -- --3hc c2 

3 gives a measure of the energy loss times its probability and is called the 
cross-section for energy loss. The mean energy loss LlE in time t is 

m our case 
LlE = -Nt.:JE 

1 .:J � a x -- x (P 300 
From this we can get a rough estimate of the efficiency of an X-ray tube. 
Treating atoms as hard spheres i s  a very crude approximation, and better 
results may be obtained by using a more refined model. 

15 RADIATION REACTION 

Let us now consider some effects of the radiation on the charge radiating 
it . We shall restrict ourselves to the case v � c since we can always make a 
Lorentz transformation to a system where this condition holds .  From ( 1 3 .2) 
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the energy radiated per unit time from a charge with acceleration v is 
2e2t2 

3c3 

The possible sources of thi s energy are I )  energy in the field, i .e .  -1- (E2 + H2) 8.n 
and 2) energy of the charge, kinetic or potential . Now if the charge executes 
periodic motion, the field energy may vary but in a periodic way so that 
the energy of radiation must come from that of the charge . We shall find 
that there is a force of radiation reaction , F which causes damping and 
hence decreases the energy of the charge. Thus, strictly speaking, there i s  
no  real harmonic oscillator in nature . The reaction does work a t  the rate F · v 
so that in order to conserve energy we would like to have 

2 e2v2 F · v + - --
3 c3 

zero . However, th is condition is  too stringent, and we actually have it 
equal to 

d 

dt f(v, v) 

so that the energy radiated over a certain interval of t ime i s  a constant 
wh ich does not depend on the length of the interval . In fact, it takes into 
account the difference of the energies in the field at' the initial and final 
times. One possible expression for F i s  

for then 

and 

2 e2 F = - -v 
3 c3 

. .  . . d . 
v · v + v · v = - (v · v) 

dt 

l z  t2 

I I 2e2 ? [ 2e2 . ]' 2 F · v dt + - v- dt = - (v · v) 
3c3 3c3 1 1  

t I I I 

( 1 5 . 1 )  

( 1 5 .2) 

with the physical meaning that change in the energy of the charge + energy 
radiated = difference of the energies in the field . 

This ensures conservation of energy , but in the case v = const . ,  we have 

a paradox that energy is  radiated though there i s  no radiation reaction. 
Where does the energy of the radiation come from? 



MAXWELL'S THEORY 77 

The expression for F written above turns out to be the correct one as 
we shal l see when give a rigorous derivation of the formula . Before giving 
this proof, let us make a few applications. 

The equation of motion of an uncharged harmonic oscillator is 

mx + mw2x = 0 

and the solution such that at t = 0, x = a, and x = 0 is 

x = a cos wt 

Now suppose the oscillator is suddenly charged, then i t  wil l  start radiat ing, 
and the equation of motion is now 

2e2x 
x + w2x = --

3mc3 

Let us assume the effect of the new term i s  small and try to get a solution 

of the form 
x = ae-ytf2cos wt 

This will be valid if y � w. Putting this in the differential equation , we 

have 

2yw - yt/2 . Y2 -yt/2 -- ae sm wt + - ae cos wt 
2 4 

2e2 { 3 -yt/2 . 3yw2a -;·t/2 w ae sm wt + e cos wt 
3mc3 2 

3y2wa -yt/2 . y3a - yt /2 } --- e sm wt - -- e cos wt 4 8 
The first approximation i s  

y = --- -
3mc3 

and the cond ition / ' � w means 

For electrons, this means 

3mc3 

2e2 

mc2 3 x 1 0 1 0 
w � -- x c = "' 1 02 3  Hz 

e2 2 . 8  x 1 0- 1 3  

(15.3) 

Thus the condition holds for all rad iation except for the very high energy 
photons in cosmic rays. 
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The energy of the oscillator is  

mx2 mw2 x2 ma2w2 -yt 
-- + --- - --- e 

2 2 2 

so that the rate of decrease of energy is y and 

decrease in energy per cycle 

total energy 

2ny = -- -
w 

We saw in (1 3 . 4) that 

energy radiated per cycle 8n2e2v 
-

total energy 3mc3 

so that energy is conserved over a complete cycle. 

EXERCISE 1 9 Calculate how much charge the earth must have in order that the radiation 

reaction shorten the length of the year by a day per century. Assume v/c � 1 and that 

the orbit of the earth is a circle . 

Due to damping, the radiation from an oscillator is  not strictly mono­

chromatic. Let us investigate the spectral distribution of the radiation. 

We shall let v denote the frequency of the oscillator and f the frequency 
of the radiation. From (14 .2) we have 

and from (14. 1) ct:) 

Ef lX I dt xe - 2nift 

0 

if we start off the oscillator at t = 0. This yields 

ct:) 

Ef iX v2 f dt e -yt/2 cos 2nvte - 2nlft 

0 
ct:) 

= v; I dt{e -yt/2 + 2 nl<v - f)t + e -yt/2 - 2nt( v + f)t } 
0 

v2 { I 1 } = 2 - 2ni(v - /) 
-

y /2 
+ 2ni(v + /) + y /2 
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Now v, the frequency of the oscillator, is taken to be positive. Thus the 

first term wil l  be in resonance for f = v and the second for f = - v . This 

gives for If I ,..., l' 
I Rf ex --------4n2(v - /)2 + y2 /4 

x 
Rf = ------­(v - f)2 + y/4n2 ( 15 .4) 

where / now takes on only positive values .  For f = v, Rf has the maximum 
value 

y2 

Its value drops to half of this for f = /1 such that 

4ne2v2 
and hence the half-width of the line is y/2n = . This shows that 

the half-width of the line is proportional to v2 • 
3mc3 

f/ 
I ·  

ll 

y 
27T 

f; 
· I  

The expression ( 1 5 .4) for the spectral distribution of the energy is quite 

general . With a slight modification in the interpretation of the symbols 

according to the ideas of the quantum theory, i t  can be applied to the 

breadth of lines in atomic spectra. Let us assume the distribution to be of 

the form 
x 

Rf = --------
(v - /)2 + (t5/4n)2 
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and try to find b. Consider two excited states, 1 and 2. If Ai , and A2 are 

the reciprocal mean l ifetime of these states, so that 

Ni = -AiN1 

Ni = Ni (O) e- ). i t  

N2 = N1(0) e -;. z t  

___.___..] - 2 

Groun d  __,.----------- state 
then by the uncertainty principle, the energies Ei and £2 of these two 

states will have widths given by 

L1Ei � M.i 

L1E2 � M.2 

and the width of the line corresponding to the transition from state 1 to 2 
will be 

Thus 

and 

- - ----
2n 2n 

% 
Rf = ----------

(i• _ /)2 + ( 2 1  + }.z ) 2 
4n 

( 1 5 . 5) 
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This formula was derived from very rough arguments, but it is correct. 

A very striking illustration of the formula occurs in some lines of stellar 

spectra. The center of a line may be absorbed out but the wings which 

may be as much as 20 A apart are observed. 

EXERCISE 20 Calculate the l ine breadth for the t ransition 2p - ls in a hydrogen atom 

by (1 5 . 5)  usin g the data given in Exercise 1 1 .  Also calculate the classical value for the 
frequency corresponding to that of the 2p - 1 s t ransition,  and compare the two values . 

Next let us consider the force of radiation on a free particle . The equation 

of motion is  

or 

2e2 . .  miJ = -- V 
3c3 

. 3mc3 .. 0 x - x =  2e2 
The solution consists of the usual part 

x = a +  vt 
and another part . If we put 

then 

and for 

we have a solution, 

x = Aeixt 

a =  3mc3 
2e2 

x = ..±_ ( e'"'t - 1) + v 
cX 

x = _±_ {� (eixt - 1 )  - t} + vt + a  . cX °' 
( 1 5.6) 

Now for electrons, 1 /cx ,...., 1 0- 2 3 sec . , so this equation says that if x = A =I= 0 
at t = 0 then an electron will instantly acquire a very large velocity and 

shoot off to infinity. Thus there is something drastically wrong. This shows 

that we must be careful in using the radiation reaction force. We shall 

derive the expression for the radiation reaction by considering the self­

force and give the conditions of validity of the expression . 
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The calculation of the self-force on an electron was first given by Lorentz. 

We assume the charge distribution is rigid, so that at any instant each 

element of charge will  have the same velocity. We also assume v � c and 

shall keep only the terms l inear in v, v, v etc. Since the magnetic field i s  

de ' 

de 

proportional to v and hence the self-force due to it to v 2 , we shall neglect 

this force, and consider just the self-force due to the electric field .  

The potentials at  p due to the element of charge de' is 
dcp = [ de' ] 

r(l - VR;c) re t  

d\jl = [ de'v ] 
rc(l - VR;c) ret 

We shall expand all retarded quantities in powers of -r = t - t' = rret fc. 
Thus by Taylor's expansion 

from which we get 

fr2 V-r3 rret = r - VT + -- - -- + · . .  

2 6 
. v-r2 fr3 Vret = V - VT + -- - -- + · · · 

2 6 

r;et = T2 - 2(r . V) T + (r • V) T2 - (r . 
v) T3 + · · · 

3 

'ret = r 1 - + ----

{ (r · V) T (r · V) T2 
,2 2r2 

(r • v) T3 } 
6r2 + . . . 

(r • V)ret = - (rvR)ret = (r . V) - (r • V) T + (r · V) T2 
2 

(r · v) T3 
---- + · · · 

6 



MAXWELL
'
S THEORY 

To our present approximation we therefore have 

_ 'rel _ ,. (r · v) (r . v) r (r . v) r2 T - - - - - + + . . . 
c c c 2c2 6c3 

're t = r -
(r · v) + (r . v) r (r . v) r2 

+ . . .  
c 2c2 6c3 

(r . v) (r . v) r (r . v)r2 - -- - + -- (r . v) r3 --- + · · ·  
c c2 2c3 6c4 (r _ _ n_'R ) = r _ (r • 

V) r + _(1_· _· v_')_r_2 + • .  • 

c ret 2c2 3c3 

[ 1 J 1 {1 (r . v) - (r . v) r + . . ·} 
r( l  - VRjc) re t 

= 
-; 

+ 
2c2 Jc3  

and hence 
ucp - - + -- - + · · ·  ,J _ de' {i (f • V) (f ' V) r } 

r 2e2 3c3 

"' = - v - vr + - vr - · · ·  + -- - · · · d·'· de' { . 1 .. 2 
} {1 (r . v) } 

er 2 2e2 

8 3 

Since we are keeping only terms linear in v and its derivatives, the final 
factor in the hast expression may be dropped , yielding 

From 

d\jl = - v - v - + - - . . . de' { r vr2 } 
er c 2e2 

1 a dE = + v  dcp - - - d"1 ,  
c at 

the + sign being used with the V symbol because the vector r points from 
p to p' rather than the other way around , we now get 

dE = - de' .!...... {1 + (r . v) - (r . v)r + · · ·
} 

r3 2c2 3c3 

+ de - - - - - + · · · 
, 1 { v vr (r · v) r } 

r 2c2 3c3 3e3r 

- e - v - v - + v - - · · ·  d , I { . .. r -· r2 } c2r c 2c2 

= tfEl + dE2 + dE3 + tfE4 
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where 
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dE1 = - de' .!_  
r3 

dE2 d ' 1 (1 rr ) 
.

. = - e -- + - v 
2c2r r2 

dE3 - d I 2 " 
- e - v 

3c3 

dE4 � de' · o(::) 
(O(z) means of the order of z.) The force on the element of charge de 
at P is 

dF = de dE 
and the total self-force is the double integral over de de' .  The different 

parts of E give the f �llowing forces 

F1 = + J J de dE1 

- - I I dr dr' er/ 
,

r
3 ( 1 5 .7) 

This is the force which tends to blow up the electron, but it gives no net 

force since reversing the sign of r just changes the sign of the integrand 

F2 = J J de dE2 

= - -1 I I dr dr' er/ � ( 1 + rr) . v 
2c2 r r2 

For a spherically symmetric distribution, the tensor rr may be replaced 
1 

by - r2 • 1 . Therefore 
3 

F2 = - � _!_ I I dr dr' ee' 3 c2 r 

4 v = - - - U 
3 

c2 
( 1 5 . 8 )  
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where U is the electrostatic self energy of the electron : 

1 f f  , er/ e2 U = - dr dr - = -2 r a 

85 

where a i s  the classical radius of the electron.  We shall return to the discus­
sion of U later. 

F3 = J J de dE3 

2 .. ff = 3c: dr dr' er/ 

2v = -- e2 
3c3 

( 1 5 .9) 

This is the radiation reaction force, and, as it i s  the same as ( 1 5 . 1 )  we have 
justified it .  

and for an electron 
/ v i  ae2 

--- ,...., l v l  x I 0-63  dynes 
c4 

so that in general th is  force is negligible . It is important to note that these 

higher terms depend on the structure of the electron . 
The force of radiation reaction acts not only on itself but on any charge 

nearby if / v i  !__ � 1 .  This condition is  roughly equal to d � A since for a /v i c . 
harmonic oscillator, !.!.! = w .  Thi s  is to be expected since if two charges 

/ v i 
near together oscillate with amplitudes A and A ' , the intensity of the radi­

ation varies as (A + A ')2 and not as A 2 + A'2 •  Hence each oscil lator 

must damp the other in order to conserve energy. 

EXERCISE 2 1  Calculate the force between two oscillators near togethe r as a fur.ction of 
their phases and amplitudes.  

1 6  SELF-ENERGY OF THE ELECTRON 

We see from the express i on ( 1 5 . 8) for F2 that a charged body has more 

inertia than an uncharged body. The total inertial force of a body i s  
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where m i s  its experimental mass. The electromagnetic contribution to this 

force is 

We have 

4e2 
F = - -- v em 3 2 c a  

F e2 em 
-- "' --"" 2 F1n me a 

For macroscopic problems Fem � Fin and Fem may be neglected.  However, 

for the elementary particle, we cannot separate the two . Now Fem cannot 

be greater than Fin ,  and it seems a plausible assumption that the two are 

of the same order of magnitude. This means 

ez 
a "' -­

mc2 

= 2 .8  x 10- 1 3 cm 

for the electron. If the electron had only electromagnetic mass, the equation 

of motion could be written 
F = Fs + Fe =  0 

where Fs is the self force and Fe is the external force acting on the electron : 

In this case the whole idea of mass is unnecessary. This was Abraham's 

idea, but the theory does not work. There must be some non-electromagnetic 

force to keep the electron from blowing up. The fact that a static distribution 

of charge cannot be in equilibrium without any external force is Earnshaw's 

theorem. The theorem states that a charged body cannot rest in stable 

equilibrium under the influence of electric fields alone . It might be thought 

that a suitable distribution of current and charge in an electron would 

keep it together, but a quite general proof can be given to show that this 

is  not possible . Consider 

f = eE + j x H 
The equation of motion is 

if E and H include both external and self fields .  A solution of f = O for 

E and H just external fields is possible since one solution is E = O and H 
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parallel to j .  However, there is no solution if E and H i nclude the self 

fields. For we can write 

j x H = -eE 

and the right side vanishes only if e = 0 since we have V · E = (} .  Thus we 

have three non-homogeneous l inear equations for jx , jn and jz with the 

determinant of their coefficients 

0 Hz - Hy 

0 
Hy - Hx 0 

since it i s  a general theorem that the determinant of an antisymmetric 
matrix of odd rank is zero . Hence there is no non-zero solution for j .  

Thus a part m0 of the mass must be  of  non-electromagnetic origin, and 

the equation of motion is  

m0V = Fs + Fe 
If the calculation of chapter 1 5 i s  valid, we have 

s = - - v + - v  + --F 4U . 2e2 •• o ( e2va ) 3c2 3c3 c4 
aw 

and if - � 1,  we have 
c ( 4 U ) . F 2e2 .. mo + -- v = e + -- v 3c2 3c3 

For macroscopic bodies, u Q2 
__ ,...,, __ c2M c2Md 

where Q i s  the charge, M the mass, and d the dimension of the body. For 

a pith ball with Q = 5 e . s .u .  and d = 1 cm this becomes 

U (Q/e)2 e2 

c2 M (M/m)d mc2 
,..,, 3 x 10- 1 3 cm 

(Q/e) 2 
(M/m) d 

"' 3 x 1 0- 20 
For the electron, however, U i s  not negligible .  

In view of the instability of charges under the action of electromagnetic 

forces alone, we are led to two possibilities : 1 )  Maxwell ' s  equations do 
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not hold in regions comparable to the size of the electron. Born has developed 

a theory of this form, but it is not unique and there is as yet no evidence 
that it describes real i ty .  An acceptable theory would show that 

e2 1 

fzc 1 37 

which contains both h and c. Thus the theory mu st be both quantum 
mechanical and relativistic . There is at present no satisfactory theory . 

2) Accept the stability of the electron as a fact. The theory of relativity 
shows that E = mc2 so that the factor 4/3 multiplying U is  a direct in­

dication of the fact that other forces are present . This force must necessarily 

be attractive and hence give rise to negative mass. It i s  reasonable to assume 

that it i s  equa l to - t U/c2 thus giving for the total mass just U/ c2 • 
Since we do not know the distribution of the charge inside the electron, 

the terms of higher order than the radiation reaction in the calculat ion of 

chapter 1 5  cannot be calculated . Hence we can on ly treat the problem m 
which 

aw 
� 1 where a > 3 x 1 0- 1 3  cm, for the electron. 

c . 

The solution of the paradox given in section 1 5  goes as fo llows : We 

obtained the solution of 

as 

where 

. .  2e2 -· 0 mx - -- x = 
3c3  

. A ( <Xt l )  X = V + - e -

°' = 

lX 

3mc3 

2e2 

mc3 aw mc2a aw 
Th d If . 11 1 us w ,..., -- an - ,..... · - 1s not sma , the neg ect of the 

e2 c e2 c 
higher order terms is  not justified, and the solution i s  not good. If 

aw � I , 
mc2a U 

h 1 Th . . t en -- � , or - � m .  i s  means that m order to keep 
e2 c2  

c 
the total 

mass of the electron equal to m, there must be a large amount of negative 

non-electromagnetic mass . It is by increasing this negative mass that the 
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kinetic energy of the electron can increase so explosively. Since we do not 

actually observe an electron shooting off to infinity by itsel f, i t  means that 

U "'  mc2 • 
Whether the electron theory i s  applicable to a part icular problem requires 

close analysis .  Consider the Bremsstrahlung of very high energy electrons 

with emission of hard y-rays which occurs in cosmic ray showers . It  seems 

at first that on account of the velocity of the electrons being very close 

to  c, and their very high energy, the problem cannot be treated . However, 

on using the coordinates moving with the electron, the y-rays appear very 

soft on account of the Doppler effect , and the problem can be treated. 

The calculation has actually been verified by the observations on cascade 

showers . 

1 7  CLASSICAL THEORY O F  SCATTERING AND DISPERSION 

In this chapter we shall treat a few problems in the classical electron theory 

of  matter. For atomic electrons, v/c "' 1 / 1 00, and , since optical l ight waves 

do not give the electron much additional velocity, i t  is justified to neglect 

relativistic effect s .  We shall consider matter to be composed of i sotropic 

oscil lators . Then an external field induces a moment m in  such a body 

m = aE 

For non-isotropic oscillators the expression is  

where a is  a tensor. For light waves,  E is  periodic, so the charges are 

accelerated and hence radiate. This accounts for the phenomena of scattering 

and dispersion. The two phenomena are related but are observed by two 

independent experiments. 

Let us first suppose that the oscillators are harmonic : then considering 

just one dimension we have 

with a correction for the radiation reaction . We shall write 
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where � means the real part of. If a is the dimension of the oscillator, from 
the uncertainty principle we have 

and since 

we have 

We shall write 

h a "' --Jp2 
hv "' Ease 

c c h  ;t, ,..., _ ,..., __ 

V Ease 

a Ease Vose - ,...., ,...., --
c 

•• 2 e 
E tvt x + w x = - 0e 

m 
and take the real part of x in the solution. The solution is 

X = A etvt + Belwt + Ce_ lwt 

where 
2 2 eEo 

( - v + w ) A = -m 
eEo A = ----­m(w2 - v2) 

If we include the radiation reaction, we have 

where 

and this gives 

1 _ . . 2 e 
E ' •·t - - x x  + x + w x = - 0e 

v0 m 

1 2e2 - - --
v0 3mc3 

eEo A = --------
( iv3 ) m w2 - ,,2 + � 

We see that the phase relation changes continuously as v passes through 
w. For light waves v0 � v, so the correction is very smal l ,  and its effect i s  
only felt near resonance. 
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We see that the scattered light will consist only of frequencies v and w, 
and thi s i s  a misleading result arising from the special model of oscillators 
we chose. If they are not strictly harmonic, there would be frequencies of 
v + -rw where T = 9, ± 1 ,  ± 2,  . . .  This is the Raman effect and is not a 
quantum mechanical effect . It arises from the fact that a general periodic 
motion with period T is given by 

where T = 0, ± 1 ,  ± 2, . . .  and cuT = 2n. In general A t  will be large only 
for low harmonics . A harmonic motion is a very special case where At = 0 for all -r except ± 1 .  In dispersion, we are only interested in the coherent 
radiation , and the model of the harmonic oscillator is good . 

We shall first consider scattered waves of the same frequency as the 
incident wave . The induced moment i s  

and therefore 

(e2 /m)Eoelvt 
er = -------

er = 

v3 w2 - v2 + i ­
Vo 

w2 v3 
- - 1 + i -v2 Vo 

Remembering that the actual value is the real part, we have 

e r = 
{( w2 - 1) cos vt + __::__ sin vt} 

ez v2 Vo - - Eo -------------
m ( w2 - 1)2 + v2 

v2 1·� 

Thus the rate of radiation is from ( 1 3 .2) 

2e2 2e4E2 
__ ;: 2 = 0 
3c3 3m2c3 

(1 7 . 1 )  

{ ( � - I) ' cos' Y I  + 2-;; ( � - I ) sin Y I  cos vi + (-;;)' 
sin' YI} 

x { ( :: - I)' + :;r 
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and the average rate i s  

1 

Now the flux of incident energy is 

S = � E2 
4n 

and the average flux is 

c £2 
- o 
8n 

Thus the total corss section for scattering with frequency v, which is the 
radiation scattered per unit flux, is 

1 
(J = 

v2 } 
+ -2 Vo 

( 17 .2) 

Since (1 3 .2) is for dipole radiation, the angular distribution is sin2 0, where 

() is the angle between E and the direction of observation.  The limit w = 0 
corresponds to scattering by free electrons, and in this case we have 

8ne4 

3m2c4 

since we may neglect v2 /v� as there can be no resonance.  This is the Thomson 

formula.  Near resonance we have 

(J � 

2ne4 

3m2c4 

1 
v2 {<w - v)2 + ( ;v:n 

and the half-width of the line i s  

- - ---

v0 3mc3 
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As stated earlier, the harmonic oscillator is a very specialized model, 

so we shall derive the induced moment for the general case . In terms of the 

angle and action variables f3 and J, the coordinate x of the oscillator is 

given by 

x(t) = � I x-.(1) e2nlr(w<J>t +{JJ 
2 r 

where T = 0, + 1 ,  + 2, . . .  
The radiation is considered as a perturbation 

V = exE0e2ntvr = e U 

where e = eE0 si small .  It must be remembered that we are to take the 

real part of the quantities involved. In our notation, w is the natural funda­

mental frequency of the electron, and v is the frequency of incident light . 

We make a contact transformation from the variables J, fJ to J, P by means 

of a generating function S( ], {J) and we do this by expanding S in powers 

of e and, for the first order calculation, keeping only the terms linear in E .  
Thus 

S = S0 + eS1 + · · · 

Since S = S0 for e = 0, S0 must be the generating function for the identity 

transformation, namely 

Hence 

Now 

and therefore 

So = Jp 

as - as1 J = - = J + t: --a{J cfJ 
_ as as1 /3 = -_ = {J + t: -_ 

oJ a1 
_ Q OX ( - OX (R 0

) x(J, {3) = x(J, p) + -- J - J) + - fJ 
- � 

a1 cfJ 

t5x = x(J, P) - x( J, {J) 
ex - ox -= - (J - j \  + - (/3 - /3) a1 j 

op 

- e g; a:; _ �� a� } 
= e(x, S1 ) 
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where (x, S1 ) is the Poisson bracket.  To determine S1 , we have the Hamilton­
Jacobi partial differential equation 

- + Ho - + e U = 0 
as ( as ) 
at ofJ 

Exp anding to first order in e, we get 

oS0 oS1 - oH0 0S1 - +  E -- + H0(J) + e -_- � + t:U = 0 
ot ot oJ ofJ 

and since oS0/ot + H0(J) = 0 

0S1 + 0H0 0S1 
+ U = O 

ot oJ ofJ 

With the explicit form for U inserted this gives aS1 OS1 1 " 2nl (rw + vr )  0 -- + w -- + - L.. xre = 
at o{J 2 r 

where w = wt + fJ is the usual angle variable and where we remember 
that w(J) = oH0/cJ . . To solve this equation, we make the " ansatz " 

S1 = L a,e2 nt (rw + vt > 

r 
Then the condition on ar is 

which yields 

x.,. a.,. = - --.----
4nz('rw + v) 

S1 = - _I _ L x.,. e2nl(rw + i·f) 
4ni r (Tw + v) 

as1 
= - ..!._ L TXT eh i (Tw - vt )  

o{J 2 r (TW + v) 

0S1 
= - __!__ L � { XT } e2nl('tW + vt )  

aJ 4ni r aJ (Tw + v) 

the dependence of w on J being neglected in the last expression. We have 
also OX 

= ..!._ L cxr e2 nfrw 

of 2 r aJ 
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Therefore 

ch = - !:._ L [TXy _!__ { Xy • } e2.itl ( fr + r ' )w + vt) 
4 r , r '  8J r'w + v 

TXr OXy '  2nl ( <r+ T ' )w + vt)J ---- -- e 
(no + v) oJ 

Remembering that we have to take the real part, the result i s  

efJx = -
e2Eo � L TX [_!__ { Xr ·  } 4 T , T '  T CJ T1W + 'JI 

- 1 OXy ' J e2.itl( t [(r + r ')w + vl + (T + T ' )fl) 
TW + 'V i)J ( 1 7 .3) 

and hence the scattered radiation consists of frequencies v + nw, n = 0, 
± I , ± 2 , . . .  and it i s  an accident that all terms with T + r'  =l= 0 vanish in 
the case of the harmonic oscillator. 

In applying the formula to atomic problems, quantum mechanical ideas 
must be used in the interpretation. An atom originally in state A may 

undergo transitions some of which a reillustrated in the diagram. The fre­
quencies of the scattered radiations are 

v - Ll v  
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where L1v is the transition frequency from A to a higher level , and 

v + L1 v' 

where 1h' is the transition frequency from A to a lower level . This explains 
the Raman effect .  

Let us now consider dispersion and absorption of radiation in a dielectric.  
For these considerations we have a good model for the dielectric if we 
assume it to consist of a large number of harmonic oscillators . We have 
seen that for a single oscillator, the induced moment is 

e2Eo m = ex = -- -------
m iv3 w 2 _ ,,2 + __ 

Vo 

for an external field E = E0et.t .  We need not consider the terms ansmg 
from the free vibration of the oscillator since by friction it is soon damped 
out. Let Nk be the number of oscillators of frequency wk in a unit volume. 
Then the induced mQment per unit volume is 

and hence the polarizability a is 

( 1 7.4) 

For a static field, the polarizability <Xo is 

We note that 

Thus l\'. is  a pure number. 

EXERCISE 22 Derive the formula for the polarizability in  a stat ic field by considering 
the effect of a steady field on a collection of oscillators. 
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The propation of electromagnetic waves in a dielectric may be treated 
in either of two ways . The first method is to take Maxwell ' s  equation in a 
material medium, and get 

_l_ £PE - _!_ LIE = 0 
C2 Of2 E 

Then use the relation between E, the dielectric constant, and a - --
3 

( 1 7. 5 )  

which holds for any frequency v .  This equation is  a consequence of  the 
well-known relation between polarization and the external field , 

P = � (E + � nP) 
The second method wh ich leads to the same result is to take Maxwell ' s  
equation for a vacu u m  and introduce the charge and current due to the 
oscillators . We have 

V · E = 4ne 

1 oH V x E = - ---c at 

V H 1 oE 
4 

. 
x = --- + Jlj 

c at 
1 a 

V x (V x E) + - - V x H = 0 
c at 

v v . E - LIE + _l_ a2E + 4:-c oj = 0 
c 2 ot 2 c o t  

_I_ 82E - LIE = - 4:7 cj - 4:7 
V C 

c2 ot1 c ot 
We shall consider a definite frequency v and write 

E E ivt = maxe ( 1 7 .6) 

Also, since most of the macroscopic properties of the body will depend 

only on the space averages of the quantities, we shall take the average 
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over a volume containing a large numbers of oscillators, but with dimensions 
small compared to the wavelength A. Then 

1 o2E P2 -- -- -+ - - E 
c2 ot2 c2 

LIE -+ LIE � LIE 

• ... 1 oP " e . iv e1.E0 " 
J -+ J = - - = L Nk - xk = - --- L 

c ot k c c m k . 3 
2 2 lV 

wk - v + --
4n oj 4niv -; v2 
- - -+ -- J = - 4n - £X E0 c ot c c2 v 

e -+ e = - V · P = - <Xv V · Eo 

4n V e -+  4n V e � 4n Ve = - 4n£X,, V V · E0 

Vo 

The field E0 i s  not the averaged field E. It is the average field which would 
exist at the location of an oscillator if that oscillator were absent, and it 

is given by 

whence it follows that 

-Fl 4n 
r-o = E + - P 

3 

P = £X ,,  (.E + 43n P) = __ <X_,, __ E 
1 - 4:r <X 3 v 

The differential equation for E i s  now 

v z -- - E  - LIE = 
c2 

In the case of free wave propagation :E is transverse so that 

and the differential equation simplifies to 

LIE + 
v z (

1 
+ 4mx,, }E = 0 

c2 4n 
1 - - ('(, 3 v 
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The expression in curly brackets is equal to ev , so our result agrees with 
that of the first method.  The solution of this equation corresponding to 
the propagation of a plane wave in the direction of a unit vector n is 

where 

1 + - o:v 
'V 3 J 

Sn 
X = -

C 1 _ 4n o: 
3 

v 

For away from resonance a v is practically real , but near resonance it has 
an appreciable imaginary part which corresponds to absorption of the 
radiation. For a single resonant frequency we have 

I 
Sn e2N 

+ ---------'V2 3 m(w2 - v2 + iv3/v0) 
x 2 = -------------c2 1 _ 

4n e2N 

3 m( w2 - v2 + iv3 /v0) 

2 2 . • 3 I Sn e2 N 
W - 'V + l'V Vo + - --

v2 3 m 

c2 
2 2 . 3/ 4.n e2 N 

W - 'V + l'V Vo - - --

3 m 

We see that the resonance frequency is not at w but at w where 

w2 = w2 - 4.n e2 N . If we write x = � (n - is) then we have 
3 n1 c 

2 2 1 
4ne2N 

n - s = + ---------

m (w2 _ v2)2 + (v3 /vo)2 

4ne2N v3 1 
2ns = ----------

m Vo (w2 - v2)2 + (v3 /vo)2 

(1 7.7) 

( I 7 .S) 

( I  7.9) 

[n is the index of refraction of the dielectric, and c/(vs) i s  the penetration 
depth . For v > w we enter a narrow region of anomalous dispersion where 
the index of refraction is less than unity .  This does not, however, mean 
that a signal can be sent faster than light . Because of the strong absorption, 
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a pulse of radiation will disappear before it moves a distance equal to its 
own width. Ed.] 

EXERCISE 23 Calculate the value of the per.etration depth at  resonance. 

Let us now interpret our result in the l ight of modern atomic theory. 
Actually, a dielectric is composed not of harmonic oscillators but of atoms 
in the normal state, and they have a set of excited states, and there i s  
resonance for each possible transition with frequency given by 

Ek - Eo 
Ii 

The scattered radiation may not be of the same frequency as the absorbed 
frequency,  and in this case we have the Raman effect, but this effect i s  
smalJ , and, since it is incoherent, i t  does not  affect the propagation of  the 
initial wave except that i t  gives a small absorption. In our model , this 
effect is  neglected . Aside from this,  the atoms act like a collection of 
oscillators. Each possible transition acts like an oscillator of frequency 

Ek - Eo 
fl 

and the number of oscillators with frequency wk in  a unit volume i s  

Nk = Natomsft 
where lie is a proper fraction. In a single atom, each transition corresponds 
to a fraction lie of an oscillator, and lie is called the oscillator strength of 
the transitio11 .  If  the values of lie ,  w k  are found either empirically or by 
quantum mechanical calculations and then put in ( 1 7 . � ) very good results 
are obtained. The quantum mechanical calculation for lie and wk can only 
be done for a few simple cases, and there is no general argument by which 
we can find these values for complex atoms . For example, in one-valence­
electron atoms, H, Na, Cs, the lie corresponding to the transit ion from the 
normal state to the first excited state are 0 .35 ,  0 .975 , 0 .98 respectively .  

1 8  HAMILTONIAN THEORY FOR THE MOTION OF A CHARGED 

PARTICLE IN AN ELECTROMAGNETI C  FIELD 

The equation of motion of a particle with mass m and charge e m an 
non-electromagnetic potential field V is 

mx = - v v  ( 1 8 . 1 )  
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I f  there is in  addition an external electromagnetic field E and H, the 
equation is mx = - V V + e{E + (v/c) x H} ( 1 8 .2) 

We want to find a function H of the canonically conjugate variables p1 , x ,  
such that oH .X; = -­op, . oH 

p, = - -­

ox, 

are equivalent to the equations of motion. 
In the absence of an electromagnetic field ,  the function is  

Ho(P, x) = -1-p2 + V(x) 
2m 

since then Eqs. ( 1 8 . 3 )  become 

yielding 

which is just ( 1 8 . 1 ) .  

. a v  
p, = - ­

ox, 

.. a v  mx1 = - ­

ox, 

When a field is present, we introduce the potentials defined by 

1 oA E = - V <p - - ­
c a1 

H = V x A  
and the function H for this case i s  

H = H0 (p - : A, x) + e<p 

For then Eqs. ( 1 8 . 3) become 

( 1 8 . 3 )  
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yielding 

. e A Pt = mx, + - 1 
c 

But since 

which is the same as (1 8 .2) .  

This theory can be used to deduce Larmor's theorem very simply. The 
theorem states that the effect of a uniform magnetic field H on a charged 
particle describing a closed orbit is to leave the form of the orbit, i ts  in­

clination to the magnetic lines of force, and the motion in the orbit un­
altered , and merely · leads to the addition of a uniform precession of the 

orbit about the direction of the lines of force, the precession velocity being 

eH 
w = --

2mc 

Suppose the potential i s  radial so that V = V(r) . Then 

p2 
H0 = - + V(r) 

2m 

Let the external field be a uniform magnetic field H along the z-axis .  Then 

we can take 

and 

Hy - --2 

Hx A,, = + -2 

I {( eH )2 ( eH )2 } H- = 2m Px + 2c y + Py - 2c x + p; + V(r) 
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This expression i s  the same as that obtained from H0 by transforming to 
a coordinate system which rotates with angular velocity w = eH/2mc about 
the z-axis ,  for then 

. ,  . eH 
x = x + -- y 

2mc 

. ,  . eH 
y = y - -- x 

• I  • z = z 

r' = r 

2mc 

This takes into account both the coriolis and centrifugal forces. 

EXERCISE 24 By considering the effect of the Larmor precession on the propagation of 

t he electromagnetic waves in  a dielectric, give a theory of the Faraday effect . 





CHAPTER 2 

Special Theory of Relativity 

1 9  TRANSFORMATION OF NEWTON'S EQUATIONS 

Suppose we have two charges, e, one fixed at the origin, and the other at 
the point (0, y, 0) of a coordinate system at rest with respect to us .  The 
equation of motion of the second charge is then 

e2 
my = -y2 ( 1 9 . 1 ) 

Next consider the case when the charges are moving with velocity v, 
(uniform) with respect to us.  In section 1 1  we saw that the field in the equa­
torial plane of a uniformly moving point charge is 

e 
EJ_ = J v2 

1 - - (y2 + z2) c2 
Now the force on one due to the magnetic field of the other is  

e [: x HJ = e[p x (p x E)] 

by ( 1 1 .  7) and hence 
= e{(p · E) p - /FE} 

Thus for two particles moving together in a direction perpendicular to 
their line of centers, the magnetic force is 

- e(PEJ_ 

Hence the total force acting on one particle is  

F = e(I - {P) EJ_ 

= � JJ - {J2  y2 
1 05 
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and the equation of motion is  
e2 J my = - 1 - /P y2 ( 1 9 .2) 

Let us now follow the charges so that they seem to be at rest with respect 
to us . We would expect to get the equations of motion in this new situation 
by making the usual transformation 

on ( 1 9.2) .  The result is 

x' = x - vt 
y' = y 
Z = Z  

t '  = t 

e2 
J my' = - 1 - {32 y' 2 

( 19 . 3) 

( 1 9 .4) 

This i s  different from ( 1 9 . 1 )  and it means that the phenomenon depends 
on the state of motion of the system with respect to a certain fixed system . 
It is important to note that the Eqs. ( 19 . 1 )  and ( 19 .4) differ by terms in 
the second order of f3 = v/c. Since in  most natural phenomena v/c � 1 ,  
it is  useful to classify terms in the powers of v/c. 

e 

e 

Next suppose that the charges are staggered so that the l ine joining them 
i s  not perpendicular to the line of motion . Then 

H = P x E  
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F = e{E + p x H} 
e2 ( 1  - /J2) - ----- {r( l  - {J2) + (p · r) P} 

r3( I - pi sin2 0)3 /2  

1 07 

( 1 9 . 5) 

which shows that the direction of the force is not along the radius vector, 
and for v � c ,  the direction approaches that of the velocity. Thus, if the 
simple transformation laws are correct , we could find, by observing the 
behavior of charges , how fast and in what direction we were moving with 
respect to the preferred reference frame in which the phenomenon takes 
a simple form. 

Thus we are led to one of three possible conclusions : 

1 )  The above prediction i s  correct, and we can find a system in which 
the equation of motion takes a simple form . According to this theory 
the earth cannot be moving with a very high velocity with respect to the 
preferred system , since we do not observe the complications predicted 
above. 

2) There i s  something wrong in the calculation of the field made above. 
This means that Maxwell ' s  equations hold only in a certain coordinate 
system . 

3) The transformation equations used in  going from one coordinate 
system to another moving with respect to it are not correct. 

In considering the validity of Maxwell ' s  equations, we need not consider 
the whole set but only the wave equation which E and H satisfy as a 
consequence of Maxwell 's equations :  

1 o2E 
- -- - LIE =  0 c2  ot2 

This equation does not transform to a similar equation i n  the primed 
variables under the transformation ( 1 9 . 3) ,  which is called the Galilean 
transformation. It i s  due to the fact that the velocity of light, c, is not 
constant for all systems under such a transformation.  The reason for 
choosing the Galilean transformation in the first place is  that under such 
a transformation Newton's  equation 

mx = F 
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retains its form in all systems .  Thus, if we rule out the first possibi li ty, we 
have to make a choice whether to keep Maxwell's or Newton's equations 
as holding universally. We shal l find that Newton 's equation has to be 
modified. 

20 MICHELSON-MORLEY AND KENNEDY-THORNDYKE 

EXPERIMENTS 

The possibility of the earth having an absolute motion with respect to the 
rest system in which the equations describing natural phenomena take a 
simple form was first tested experimentally by Michelson and Morley . 
They argued that if the earth has an absolute motion, the velocity of light 
would be different in different directions, and hence there should be a 
shift in the fringes of an interferometer when it i s  rotated through 90°. 

The figure shows the schematic layout of an interferometer. M1 and M2 
are mirrors at the ends of two arms, and M is a half-silvered mirror which 

-�- M2 

v 

splits the light coming from S. Suppose the arm ( 1 )  is paral lel to the direction 
of the absolute velocity v ;  then the time taken for the l ight to go from 
M to M1 and back to M is 

t( l )  - 11 11 I I - + -­
c - v  c + v 

- - ---
c 1 - {P 

The correspond ing time for the arm (2) is  

1 ( 2 )  = 212 
.L c J I - {J2 

(20. l )  

(20.2) 
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Now if the system is rotated through 90° so that arm (2) is parallel and 
arm ( 1 )  is perpendicular to the absolute veloc ity , the corresponding times 
are 

Hence 

For 11 

( 2 ) 212 1 1 1 1 =
-
c 1 - {J2 

c 1 >  211 1 t = -.l c J 1 - f32 
LJ T = (t� ll ) - t<l.2 >) - (t�t >  - t��» 

� 21, ( 1 
c I - fl2 

1 ) 21, ( 
Ji - f.J2 + --;- 1 

2(1, + /2) ( 1 

J1 � P' ) -
c 1 - p2 

= 12 = I and {3 � 1 ,  we have 

Ll T  � �fJ2 
c 

(20 .3) 

(20.4) 

1 Ji � P' ) - {J2 

(20 .5) 

(20.6) 

The experiment performed by Michelson and Morley was accurate enough 
to detect a few tenths of a percent of the expected fringe shift if for v the 
velocity of the earth in i ts  orbit was taken. However no shift was observed . 

To explain the null result, Fitzgerald and Lorentz advanced the con­
traction hypothesis which states that all lengths parallel to the direction 
of the absolute velocity contract in  the ratio 

1 1 1 = � I - p21J. 

which i s  the same as a contraction in  the ratio of I : J I  - {J2 between the 

length at rest and in motion. 
If  we put / 1  = I,  12 = I + a, then including the contract ion,  we have 

t ( I ) -
II -

1 ( 2 ) -.l -

r< l )  - t( 2 )  -I I  .l -

21 
c JI - p2 

2(/ + a) 
c JI - p2 

2a 
(20.7) 

c JI - p2 
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Thus since the velocity of the earth in its orbit should make v vary with 
time, we would expect a gradual shift during a year in the fringes of a 
stationary interferometer. This experiment was done by Kennedy and 
Thorndyke, and it also led to a null result .  This observation can be explained, 
if, in addition to the contraction in length ,  we have a dilation in time : 

L1 t  = L1i­
J1 - {J2 

where L1i- i s  a time interval recorded by a clock whi ch moves along with 
the interferometer, and L1 t i s  the corresponding interval recorded by a 
clock which i s  at rest with respect to the absolute frame. Since the wavelength 
of the light used in the interferometer is  determined by atomic c locks 
(i .e . , excited atoms) which move with the interferometer, Eq.  (20.7) should 
under the time dilation hypothesis ,  be replaced by 

o >  c 2 >  2a . 
i- 1 1  - 'l' J. = - = mdependent of f3 

c 

[The length contraction hypothesis may be made plausible by refering 
to Eq. ( 1 9. 5) which gives the force between two moving charges. In this 
equation r i s  the separation vector between the two charges as measured 
in the absolute frame. If the length contraction hypothesis is correct then 
the separation vector as measured in a frame (of actual physical meter sticks) 
moving with the charges is given by 

where 
r' = T · r 

T = 1 + ( I - i) !!!_ 
JI - pi /32 

T- 1  = 1 - (I -JI - f32) _!!!!. f32 
I T2 = 1 + 

1 - /32 pp 
The force measured in the moving frame may be determined by appeal 
to the energy principle, which should remain valid .  We must have 

F' · dr' = F · dr 
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and hence 
F' = T-1 

• F 

By direct substitution of expression ( 1 9 . 5) one finds 

which ,  except for the factor J 1 - 132, has the same form as the electrostatic 
force between two charges at rest . This means that for every dynamical 
configuration of a collection of slow-moving charges, the center of gravity 
of which is at rest, there exists another physically realizable configuration 
in which the center of gravity moves with (arbitrary) velocity v and the 
configuration as a whole is contracted, in the direction of v, by the factor 

JI - 132 • Lorentz reasoned that since matter is made up of electric charges, 
all bodies must show this contraction. 

It will be noted that although the configuration suffers the Lorentz 
contraction, the orbital motion is slowed down because of the factor 

J I - 132 in the expression for F' .  This is in the right direction to produce 
the time dilation effect, but does not account for all of it. The full effect 
is obtained by postulating, in addition, an increase in all masses by the 

factor I // I - 132 •  Ed. ]  

21 LORENTZ TRANSFORMATION 
The time di lation can be shown to follow from the Lorentz contraction 
and the principle of relativity . We shall assume not only that the length 
of a rod in a moving system is contracted, but also that the length of a rod 
in a rest system appears contracted to an observer in a moving system. 
This assumption of the relativity of the Lorentz contraction has far reaching 
consequences on our ideas of simultaneity. 

The length of a rod is  obtained by finding the coordinates of its end 
points at a certain instant t . For a coordinate system in which the rod is 

at rest we have 

For a system in which it is moving, 

/' = x�(t') - x�(t') 
and 

I' =t= I 
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Suppose there is another parallel rod, of equal proper length, which is  
at rest in the primed system. Consider the instant when the left hand ends 
of the rods are in coincidence (see figure) . Then the right hand ends will 
not be in coincidence in either frame. An observer in  the unprimed system 
sees that the right end of the rod moving with respect to him gives a reading 

of I JI - {l2, as measured by his own rod , at the same instant that he 
observes the left ends to be in coincidence. For an observer in the primed 
system, however, these observations are not simultaneous since when he 
left ends of the rods are in coincidence for him, the right end of his own 
rod extends beyond the right end of the rod moving with respect to him.  

y y I 

v 

J-�����--1�-����-�-, x 

z 

Consider two coordinate systems, one moving with respect to the other 
with velocity v along the x axis .  From the Lorentz contract ion we have 

Ji - {Px' = x - vt 
and from the condition of relativity 

Therefore 

and 

J 1 - {J2x = x' + vt' 

JI - /l2 x = 
x - vt + vt' 

J1 - fl2 
t' 

t - - x 
c2 t ' = --;===-

J i  - {P 

(2 1 . 1 )  

(2 1 . 2) 

The inverse transformation can be obtained simply by changing the s ign 
of v, as this is just the condition of relativity . Thus 

v 
t' + - x' 

c2 
t = -;===-

J I - {J2 
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We can easily verify this by eliminating x in  the first transformation 
equation . Writing 

we have 

1 
y = ---:===-J 1 - p2 

t '  = r [ ' - c� y(x' + vt')] 
(I - _/1_2-) t' = yt - _v y2 x' 

I - p2 c2 

( ,  v ') t = y t + � x  

This explains the null result in the Kennedy-Thorndyke experiment, since 
for x' = 0 

t ' 
t = -;===-

JI - p2 
We have so far obtained the transformation equations for x and t. The 

Michelson-Morley experiment also tells us that the length perpendicular 
to the direction of motion must be unaltered. Hence 

y' = y 

�' - -... - ... (2 1 . 3) 

(2 1 .4) 

The transformations (2 1 . 1 )  to (2 1 .4) constitute the Lorentz transformation. 
This transformation can be obtained from two general postulates : 

I )  complete relativity 

2) constancy of the velocity of light 

This method of derivation is first due to Poincare . The second postulate 
states that for two coordinate systems, one moving relative to the other 
with uniform velocity v, if 

then 

( ' I )2 (y' f )2 + ( I ,.. t )2 2 1 2 X2 - X i  + 2 - Yi Z2 - "' 1  = c t 
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and vice versa. By a proper choice of the origins of the coordinate system, 
we can write 

x; - x '1 = x' 

Thus we can write 

(2 1 . 5) 

etc. We want to find the most general transformation satisfying (2 1 . 5) and 
compatible with the first postulate. The transformation must be linear, 
since if it were not, there would arise singularities in space and this i s  
not  permissible ; and also a uniform motion in one system would not 
correspond to a uniform motion in another system . 

EXERCISE 25 Prove that in order that a uniform motion in one system correspond t o  

a uniform motion in another, the t ransformation must be l inear. 

Further, for a l inear function of x, y, z, t to correspond to a linear 
function of x' , y', z' , t ' ,  K cannot be a function of x, y, z or t .  If K is  a 
function of v then due to the principle of relativity, it can only depend on 
the absolute magnitude of v .  Moreover, each transformation must have 
an inverse. That is, the product of a transformation to a system with 
velocity v and a transformation to a system with velocity - v  must reduce 
to the identity transformation . This implies 

w hence 
K2 = I 

For a relative velocity al ong the x axis ,  the most general transformation 
possible under the above conditions is 

x' = Ax + Bt 

t ' = Cx + Dt 

y' = Ey 

z' = Fz 
Now if we take x = t = z = 0 in (21 . 5) then 

y2 = y'2 

(2 1 .6) 
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There is no reason why the direction perpendicular to the velocity should 
change. If i t  did, the first postulate would be violated . Hence 

E = + 1 ,  and similarly F = + 1 
We shall take the positive signs, since the negative signs correspond to 
reflection of the coordinate axes .  Substituting in  (2 1 . 5) we have 

A2x2 + 2ABxt + B2t2 - c2(C2x2 + 2CDxt + D2t2) = x2c2t2 

A 2  - c2C2  = I 

AB - c2 CD = 0 

B2 - c2n2 = - c2 
and in addition we have 

B - = - v  
A 

i f  the primed coordinate is  moving with velocity v along the positive x 
di;ection of the unprimed coordinate. Thus we have four equations for 

four unknowns and the solution of these equations is 

where 

A =  y 

B = - vy 
v 

C = - - y 
c2 

D = y 

y = I JJ I - /J2 
With these values, (2 1 .6) are identical with the Eqs. (2 1 . 1 ) to (2 1 .4) .  They 
can be written in vector form thus : 

r' = y{(n · r) n - vt} + {r - (n · r) n} ( v ·  r) 
t '  = y t - 7 

where n is a unit vector in the direction of v. 
Einstein gave a physical interpretation of the Lorentz contraction by 

studying the sychronization of clocks. Two clocks, A and B, at rest with 
respect to each other and near together can be said to be synchronized if 
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they read the same. However, if they are not close together, the two clocks 
cannot be observed at once. We must use some kind of a signal . Since the 
velocity of light is constant in all frames, and hence reliable, we use l ight . 
A signal sent from clock A, when A reads t 1 ,  reaches clock B when B reads 
t 2 ,  whereupon it  is part ially reflected and returns to A when A reads t 3 .  
The clocks are synchronized if 

or 

It is  clear however, that due to the constancy of the velocity of l ight , two 
clocks synchronized for an observer at rest with respect to them, will not 
be synchronized for a moving observer. 

The time dilation gives rise to a " paradox" . Suppose we have a set of 
identical twins A and B. B is taken on a long journey in a straight line with 
uniform velocity (except for short intervals  of time when he is accelerated 
to attain this motion from rest, to reverse his velocity, and to return to 
rest beside A) . On return, B will be younger than A, since B's clock has 
been ticking more slowly than A's.  By relativity , B may be tempted to say 
that it was A who has been in motion and not B so that A should be the 
younger. However, relativity does not apply since there is an asymmetry 
in the problem. B has undergone acceleration,  whereas A has not. This 
suffices to resolve the " paradox,"  although one should be cautioned not 
to assume that the difference in their ages i s  a function solely of the duration 
and magnitude of B's acceleration. It depends also on the duration of the 
trip. 

Next let us consider the transformation of velocities. As before, let the 
primed system move with velocity v along the x axis of the unprimed 
system. We know that , if terms of the order v2 /c2 and h igher are neglected, 
we get 

where 
dx Vx = - , 
dt 

dx' v� = --

Now from (2 1 . 1 )  we have 
dx' = y(dx - v dt) 

= y( Vx - v) dt 

dt'  
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and from (2 1 .2) 

Therefore 

and the equation for Vx is 

dt' � y ( dt - :, dx) 
= y ( 1 - V ;x ) dt 

v; = Vx - v 
1 _ v Vx 

c2 

v; + v 
1 vV� 

+ -­c2 

1 1 7 

(2 1 .7) 

(2 1 .8) 

This shows that the sum of any two velocities is less than c unless either 
one of them equals c .  This is  consistent with our postulate that the velocity 
of light is c in all systems. 

From (2 1 .2) and (2 1 . 3) we also have 

dt' = y ( dt - :2 dx) 
dy' = dy 

V '  = Vy ' r (' - ";,· ) 
and the inverse transformation is  

v: = v; 
' 

r ( 1 + v;,; ) 
Similarly from (21 . 2) and (21 .4) we get 

(2 1 .9) 

(2 1 . 1 0) 

(2 1 . 1 1 )  

(2 1 . 1 2) 
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EXERCISE 26 Suppose a meson with mass 200 m moving with velocity v = 0.9Sc breaks 
up into two particles, each of mass m. By using the conservation laws of energy and 
momentum , calculate the velocities of the two resul tant particles and show that the 

same values can be obtained by using a reference system in which the meson is original ly 

at rest and then using the transformat ion equat ions for the velocities.  (Use the fo l lowing 

expressions for energy and momentum : E = 
-J-r-1=-=13=-2 

mc2 

mv 
p = ---;J==� Ji - 132 

See section 28.) 

22 MINKOWSKI DIAGRAM 

It is possible to give a graphical representation of the length contraction 
and the time dilation. Let I = ct ; then the Lorentz transformation (2 1 . 1 ) 
to (2 1 .4) can be written 

where 

so that 

Hence if we let 

then 

and 

x' = yx - 13yl 

I' = yl - 13yx 

1 
y =  -J-r-1==13=-2 

y = cosh q 

13r = sinh q 

{3 = tanh q 

x' = x cosh q - I sinh q 

I' = - x sinh q + I cosh q 
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Thus the axes x' and I' represented in the x, /-plane, have the following 
shape : 

The paths of l ight rays passing through the origin are the l ines x = + I  
and these lines divide the plane into four regions which for an observer 
at rest at the origin of the unprimed system represent future, past, and 
elsewhere . The regions called el sewhere are so named since any disturbance 
originating in these regions cannot affect the observer due to the fact that 
no signal can travel faster than light .  This representation is called the 
Minkowski diagram. 

It  i s  interesting to compare the above transformation with that of the 
rotation of space axes in a plane 

I z z 

y ' = y cos d + z s in  d 
z ' = -y sin d + z cos d 

y 



1 20 LECTURES ON ELECTRODYNAMICS 

The Lorentz contraction can be represented in the Minkowski diagram. 
As usual, let the primed system, C', move with velocity v along the x axis 
of the unprimed system, C. Suppose we have a measuring rod of unit 
length at rest in C, with one end at the origin, and the other at A .  The 

/ 
/ 

/ 
/ 

/ / 

world l ine of the first end is  the I axis , and that of the other and is a line 
parallel to the I axis and cuts the x' axis at A ' . We want to show that OA ',  
which is the length ·of the rod as seen by an observer in C', i s  of length 

.J 1 - {J2. We cannot compare the lengths of the lines OA and OA' in the 
diagram, since the invariant in this case is 

x2 - /2 

and not the sum of the squares of the coordinates ,  y2 + z2 , say, as in the 
case of space rotation. We have to find the coordinate x' of A' in terms of 
the coordinates x and I of C. 

Now the equation of the x' axis in C i s  

I =  {Jx 

and hence for A ' we have /' = 0, I = {Jx. The invariant relation 

x ' 2  - /' 2 = x2 - /2 

thus reduces to 

and since we also have x = I for A and A',  we obtain 

x' = J1 - fl2 

which is just the Lorentz contraction. 
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I t  can be  shown similarly that a rod a t  rest in  C '  appears contracted 
in C. Let OB' be the length of a unit rod at rest in C. Then the world line 
of B' will intersect the x axis at B, and we have for it I =  0, I' = -{Jx' , 
x' = I ,  so that the invariant gi ves 

x2 = 1 - {P 

and hence the Lorentz contraction .  

EXERCISE 27 Show h o w  t he t ime dilation can b e  i l lus trated in the M inkowski diagram . 

23 DERIVATION OF THE FRESNEL COEFFICIENT AND THE 

ABERRATION FORMULA 

We shall give here two applications of the velocity addition formula to 
the explanation of two experiments which were important in the develop­
ment of the theory of relativity . First let us consider Fizeau's experiment. 
Here the times required for light to travel through water with and against 
its direction of motion are compared . If the water is at rest, the velocity 
in i t  i s  simply e/n where n i s  the index of refraction of water . If the water 
has velocity v, then by (2 1 . 8) the light travelling with it has the velocity e 

� � c +
n
: )  

v + -

11 

1 
v n 

I 
v + - + -en en 

,....., : [i + : (n - � )] (23 . 1 )  ,....., 

for v/e � 1 .  Thus relativity gives a simple explanation of the Fresnel dragging 
coefficient . 

Next let us  consider aberrat ion .  Let the reference system C' move with 
velocity v along the x axis of system C. Suppose a particle has velocity V' 
making an angle with the x' axis in C' .  We want to calculate these quantities 
in the unprimed system. From (2 1 . 8) we have 

v� + v 

v V ' I + __ x e2 
V' cos a ' + v 

v V' cos a ' 
I + ----

,, 
e-
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and from (2 1 . 10) 

Hence 
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V '  
v = ----Y __ ' r (' v V� ) 

+ ­
c2 

V' sin 1\- 1  
--------� ( + v V' cos rX' ) y 1 c 2  

Vy V' sin rX ' 
tan rX = � = -------

Vx y( V' COS rX1 + v) 

J 1 - {J2 tan rX '  

v 
1 + - sec 1X1  

V' 
For the case of l ight we have V' = c and 

tan rX = J1 - {l2 tan cX '  

v 
1 + - sec c:x ' 

c 

(23 .2) 

(23 .3)  

This is  the correct aberration formula which checks with al l  the experiments .  
I t  seems a bit remarkable that we  can obtain correct formulae by  simple 

Lorentz transformation when we consider the complexity of the problem , 
as for instance if we try to obtain the dispersion formula when all the 
electrons are moving uniformly in addition to their harmonic motion. The 
reason we can derive a formula in a coordinate system which is  most 
convenient for the calculation and then make a Lorentz transformation to 
get the result in the required system is  due to the fact that true physical 
equations hold in all systems. That is, the equations derived that describe 
natural phenomena are invariant under Lorentz transformation.  

24 COVARIANCE 

Let q; stand for any one of the observables r, t, E, H, m, j , etc . in the co­
ordinate system C with which we are concerned . There is some relationship 
of the form 
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which expresses a physical law. Let the corresponding value of q in another 
coordinate system C' be q' . C and C' are connected by a Lorentz trans­
formation. The same law will be expressed in C' by the equation 

A�(q') = 0 
In general 

q' =F q 

and A '  i s  a different function of q'  from A of q. The idea of covariance is  
expressed in the relation 

Aiq) = 0 ¢ A�(q') = 0 

This condition is equivalent to the relation 

A� = L QkjAj 
j 

where I Qki l  =t= 0 ,  since the vanishing of one set implies the vanishing of 
the other . If the above relation holds for a Lorentz transformation then the 
e quation 

i s  said to be Lorentz covariant . 
As an illustration consider one of Maxwell 's  equations 

V · E - 4ne = O 

If we make a Lorentz transformation, we will not get 

V · E' - 4ne' = O 

but some more complicated expression. This is  because the equation is 
only part of a general law. The other part is  

V x H - _!_ oE 
- 4nj = 0 c ar 

and the correct relation is  

V · E' - 4ne' = q1(V · E - 4ne) + P2 • V x - - - - nJ ( 
H 

1 oE 
4 ·) c at 

where q1  and p2 are certain scalar and vector constants respectively .  
We have seen that the Lorentz transformation mixes up the time and the 

space coordinates .  Thus 

(x' ,  y', z' , t') = Q(x, y, z, t) 
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and we found that Q, the matrix of the transformation can be written in 
the form 

x y z ct 
v 

x' y 0 0 - - y c 
y' 0 1 0 0 

Q = (24. 1 )  
z' 0 0 1 0 

ct' v - - y 0 0 y c 
If we let x1,  x2, x3, x4 stand for x, y, z, ct, then 

where µ stands for any one of 1 ,  2 ,  3 , 4, and we are using the summation 
convention that two repeated indices, one upper and one lower, on the 
same side of the equation are to be summed from one to four. Q� i s  the 
element in the µth row and vth column of the matrix Q given above. 

Any set of four quantities Aµ which transform according to the law 

(24.2) 

i s  called a contra variant 4-vector. If xµ stands for x1, x2 , x3 , - x4 , for 
µ = 1 ,  2, 3 , 4, respectively, then xµ is said to form a covariant 4-vector. 
Now 

= invariant 

An invariant is a scalar quantity which remains unaltered during any 
transformation of the coordinate system. A set of 4 quantities Bµ which 
transform like x

µ 
is called a covariant 4-vector. I t  i s  clear that 

Aµ Bµ = invariant 

The set of 1 6  quantities A µBv transform according to the law 

(Aµ Bv) '  = QfQ;A). BY (24 .3) 

and is said to form a tensor of second rank . In the same way, a tensor of 
arbitrarily high rank can be formed by taking the product of vectors thus 

AµBvC;.D11 
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and they transform according to the law 

(AµBvC;.Dri . . .  ) ' = Q�QpQ�Q� . . .  A°'Bf3CYD6 • • •  (24.4) 

Such a complicated set of quantities does not usually occur in nature, but 
symmetric and antisymmetric tensors of second rank are frequent . The 
former is such that each element i s  unaltered by the interchange of the 
indices p, v ,  and so has 1 0  independent components ; the latter is such 
that each element merely changes sign by the interchange of µ and v and 
has 6 independent components .  In classical mechanics , the Q� are uniquely 
determined since they connect observable quantities ; in quantum mechanics, 
however, since the wave function "Pi i s  not an observable, but only the 
square of its absolute value is, the sign of its transformation coefficients is 
undetermined . 

The values of Q� are greatly restricted since the Lorentz transformations 
form a group . That is, the sucessive application of two transformations L 
and L '  must be equivalent to another Lorentz transformation L" . Thus 

and therefore 

L "  
(_x.I')" = Q�x" 

L "  L '  L 
Q� = Q�Q: (24. 5) 

I t  turns out that all quantities arising in electromagnetic theory transform 
according to laws involving the matrix Q� or product of Q's .  A physical 
law may be written in covariant form, but its val idity must be tested by 
experiment . 

Consider a general tensor of second rank 

We can write i t  as a sum of 3 parts which are themselves tensors . First 
we can separate it into the symmetric and antisymmetric components 
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Sµv has 1 0  and Aµv has 6 independent components . This separation i s  
preserved under a Lorentz transformation since the transformation matrix 

Q�Qfi 

i s  invariant under the simul taneous interchanges µ +:± v and a � {J. We 
can further write 

where 

and 

(1 0 0 0) 
(oµv) = (o

µ
v) = o 1 o o 

0 0 1 0 
0 0 0 - 1 (1 0 0 0) 

(oµa 15av) = (b�) = 0 1 0 0 
0 0 1 0 
0 0 0 I 

This separation i s  also invariant under Lorentz transformations. Thus 

Tµv = Sµ" + Aµ" + _!.._ oµ" S"' 
4 

"' 

where Sµv has 9 independent components, Aµ" has 6, and oµ" s: has one. 
The antisymmetric part Aµ" can be thought of as a 4-dimensional generaliza­
tion of the vector product since 4-vectors Bµ and Cµ may always be found 
such that 

It may also be regarded as a surface vector, since the six independent 
components are the projections on the six coordinate planes of the area 
determined by Bµ and Cµ. 

Another type of tensor which occasionally occurs is  a completely anti­
symmetrical tensor of the third rank , Tµv). . The components of such a 
tensor vanish unless all three indices are different . Therefore i t  has only 
4 independent components, and they can be characterized by the missing 
index . 
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We shall l ater make use of the operator aµ defined by 

(oµ) = (_j__ , _j_ , _j_ , _!_ J:_) 
e x  oy o= c ct 

EXERCISE 28  Prove that a
µ 

is a covariant 4-vector.  The contra va riant form of aµ i s  

defined by 

(d'') = - - - - - -
( a a a 1 a )  

iJx ' i)y ' az ' c at 
From the two together we can construct the following scalar operator :  

a 1  a 2  a1 1 a2 D = iJ  oµ = - + - + - - - --

µ ox2 r)y2 i)zl cl iJ t l  

25  TRANSFORMATION LAWS O F  ELECTROMAGNETIC 

QUANTITIES 

Let us now apply the ideas developed in the last section to wri te Maxwell 's 
equations in covariant form and to see how the quantit ies which occur 
in it transform under a Lorentz transformation. We have 

V · H  = 0 (25 . 1 )  

1 cH 
(25 .2) - - + V x E = O 

c at 

V · E = 4ne (25 .3) 

V x H - _!_ cE = 4nj (25 .4) c at 

Let us first consider (25 . 3 )  and (25 .4) .  We know that (e ,j) must transform 
to (e' ,  j ' ) ,  and that they must do so in such a way that, if the charge is at 
rest in the unprimed system (that is  j = 0) then 

e' � eo 

. ,  f!oV J � -­

c 

to the first order in v/c. We are using the subscript 0 to indicate quantities 

measured in the rest system. Now the total charge J Q dV must also be an 

invariant. We would meet with great difficulties if this were not so .  Since 
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the volume contracts by the factor J 1 - v2 /c2 , we must have 

I (]o (] = ----;:=== 

J1 - v2/c2 

Thus e transforms like t ,  and so we are led to make the guess that (j , e) 
form a contra variant 4-vector r. Then 

(j 1 ) ' = U xY = 'yj x + Pre 

(j2) ' = {jy) ' = jy 

(j 3) ' = {jz) ' = iz 

(j4) '  = e' = Yf! + f3Yix 

This transformation law guarantees both the invariance of the total charge 
and the reduction to correct values for low velocities .  

The same argument may be  given in  another way. (j , e )  satisfy a con­
servation law 

.!._ oe + V · j = 0 
c at (25 . 5) 

which must be covariant under Lorentz transformations, and this i s  the 
case if (j, e) form a contravariant vec tor since then (25 . 5) can be written as 

(25 .6) 

Thus the right sides of (25 . 3) and (25 .4) form a contravariant 4-vector. 
The left sides have differential operators c µ ,  so that the simplest way of 
writing the equations in covariant form is 

(25 .7) 

Since only 6 quantities E, H occur on the left , we suspect Faµ to be an 
antisymmetric tensor. To find Fer.µ in terms of E, H let us introduce the 
potentials  A and <p such that 

H = V x A  

1 oA E = - V <p - - -
c at 

Then (25 . 1 )  and (25 .2) are satisfied identically . A, Cf are not uniquely 
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determined by these equations since 

A' = A + V A 

, 1 oA <p = <p - - -c ot 

129 

where A is  any scalar function, give the same value of E and H. We guess 
that A, <p form a 4-vector, and from the fact that 

A ; = A 1  + o,A 
<p = <p - o4A 

We see that they form a contravariant 4-vector, qf . It may be noted here 
that when we obtain the transformation laws of the potentials, the whole 
problem of finding the field of a moving charge reduces to that of finding 
it for a static distribution, and then applying a Lorentz transformation. 

Consider the equation 
(25 .8)  

Replacing the derivatives of the potential by the field quantities, we get 

F1 3 = - F3 1 = - Hy 
F2 3 = -F32 = Hx 

£43 = - £34 = - Ez 
and writing F

µ
.,, in matrix form we have 

v __., 
µ 0 Hz - Hy i - H:r 0 Hx Fµv = Hy - Hx 0 

- Ex - Ey - Ez 

Ex 
£}' 
Ez 

(25 .9) 

0 

Raising both indices to Fµ" gives the same matrix except that the signs 
of E:i" EY , E:r , are altered. If we put this value of Fµv in (25.7) we obtain 
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Maxwell 's  equation . For example for µ = 1 ,  we have 

which is just 

oF1 2  oF1 3 1 oF1 4 
-- + -- + - = 4nf� oy oz c ot 

oH:: _ oHy _ !_ oEx = 4njx 
oy oz c at 

The other set of Maxwell 's  Eqs. (25 . 1 )  and (25 .2) can also be written in 
covariant form. 

V · H  = 0 
written in terms of Fµ,, is  

0 1F2 3 + 02F3 1  + 03F1 2 = 0 

Note that the Index 4 is missing an d that the indices 1 ,  2, 3 are cyclically 
permuted. Let us write an analogous equation in which the index 1 is 
missing. 

This is  the same as 

which is just 

cEz _ oEy + !_ oHx = O ay cz c at ( 1 oH ) 
- - + V x E  = 0 c at x 

Thus (25 . 1 )  and (25 .2) may be written in the form 

L, oµF;.,, = 0 
eye!. perm. 

(25. 1 0) 

where µ, .A, v are all different . This is a completely antisymmetric tensor of 

third rank and is equivalent to a 4 vector . We can write the equation as a 
divergence of a tensor by introducing the dual of Fµv . The dual Gcr.fJ of a 
tensor Fµv is  defined as 

(25 . 1 1 )  

where t:°'fJµv i s  the antisymmetric unit tensor o f  the fourth rank. Its com­
ponents vanish unless al l 4 indices are different , and the nonvanishing 
components equal + 1 or - 1  according as tX{Jµv form an even or an odd 
permutation of 1 ,  2, 3, 4. In terms of G°'fJ Maxwel l ' s Eqs. (25 . l )  and (25 .2) 
can be written 

(25 . 1 2) 
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T o  see this we make use o f  the fact that 

and hence 

Each of the four independent values of iX leads to one of the Eq. (25 . 1 0) 

which have already been shown to be equivalent to (25 . 1 )  and (25.2) .  
If  w e  introduce the complex tensor 

KC<fl = F'43 + G"'f3 
then the whole set of Maxwell's equations can be written 

oCJ;KJ.14 = 4nr (25 . 1 3) 
The real part gives (25 .3) and (25 .4) ,  and the imaginary part gives (25 . 1 )  

and (25 .2) . 
From the tensor equations we find the following transformation equations 

for E and H :  
Ej1 = E 1 1  
Hj1 = H 1 1  

E� = y {E + ;  x Ht_ 
I H� = y {H - ; x E}

.L 

We have an indication here that the force on a moving charge is 

e {E + � x u} 

(25. 1 4) 

We shall see later that this Lorentz force can be obtained from the electro­
static force. To verify these formulae, we have 

E� = F;4 = Q�QiF�11 
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and using the value of the matrix Q (24. I )  obtained in section 24, we get 

E; = yQ!F1µ - yfJQiF4p 
= y2F14  + y2{J2F41  
= Ex 

EXERCISE 29 Check the rest of the transformation formulae for E and H. 
Let us now apply the above formulae to find the field of a uniformly 

moving point charge, and check the results obtained in section 1 1 . Let a 

charged particle be at rest in the primed system, and denote its position 

in this system by r; = (x; , y; ,  z;) . We shall denote the point where we 

want the field by r� = (x� , y� , z�) . Then 

H' = 0 

E
' 

= 
e(r� - r�) 

lro - re l 3 

To find the field in the unprimed system, in which the particle i s  moving 

with velocity v along the positive x axis,  we transform the two sides of the 

equation. For the right side, 

For the left side 

x' = y(x - vt) 
y' = y 

z' = z 

Hx = H' 

E = E' = 
e(x� - x�) 

x x 
I r� - r� l 3 

H.l = +y ! x E' 
c 

v 
( 

' ' ) - x ro - re 
c 

= +ye �����-
l r� - r� l 3 

E.t = yE� 

ey(r� - r�) .L 
Ir� - r� l 3  



Let 

Then 

and 

SPECIAL THEORY OF RELATIVITY 

R* I 
( 

I '
) = - ro - re 

y 

� {(x0 - x, + vt) , ; (y0 - y,), ; (z0 - z,)} 
R = {(xo - Xe + vt) ,  (Yo - Ye), (zo - Ze)} 

E = eR = eR 
( 1  _ {P) 

y2R* 3 R* 3 

v H = - x E 
c 

1 3 3  

(25. 1 5) 

(25 . 1 6) 

These equations are seen to be identical with ( 1 1 . 6) and (1 1 .7) . We note 
that E is perpendicular to H, and where v is close to c we have IHI � IE I . 
Moreover, if E.L i s  the magnitude of the electric field at a given distance 
from the particle in the particle's " equatorial plane " and £11 is the magnitude 
of the field at the same distance along the " polar axis " (i .e . ,  the l ine of 
motion) then 

E11 = ( I  - /32)312 EJ. 

Therefore the electromagnetic field of the particle approaches more and 
more to that of a radiation field as v approaches c .  

2 6  APPLICATION TO T HE  METHOD O F  VIRTUAL QUANTA 

Consider an atomic system of dimension d, bombarded by a stream of 
charged particles with velocity approaching that of light .  When a particle 
passes by, the effect is much the same as if a pulse of electromagnetic 
radiation passed by. There is this difference, that in the case of particles 
there i s  no phase relation between the effects of different particles while 
there is a relation for the radiation field . But in such ph enomena as ab­
sorption, thi s  does not make any difference. Thus by making a Fourier 
analysis of the perpendicular component of the particle field, we can find 
what kind of electromagnetic waves it is equivalent to, and if we know what 
happens when the atomic system is  irradiated by electromagnetic radiation 
of the corresponding frequencies, we can easily find what happens when 
the same system is born barded by high energy charged particles. 
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We shall proceed to derive a formula giving the number of quanta of 

radiation equivalent to the passage of a single particle .  From (25 . 1 5) we 

have 

E = eRJ. 
J. y2 R* 3 

when o .l stands for the derivative in the perpendicular direction. We may 
therefore write 

where 
- oo  

E.t,. = - fJJ. f � e - 2nt vt dt R* 
- oo  

00 

E e2 nt.t dv .l v 

v � 2nl--(x0 -x8) = - u e " 
.l 

f ( Xo -X ) 
e 

- 2niv t + -v -" dt 

- oo  

with e2 = y2 + z2 so that f) = � .t 
oe 

Let � = 2nv (t - (xo � Xe) } Then 

- oo  
Now 00 cc 

(26 . 1 )  
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where K0 i s  the Hankel function of zero order. For small values of the 
argument , 

K0(z) � - In ( � ) 
and for large values of z, 

( ) /'--;; - -Ko z ""' - e · 

\ 2z 

Since we are only interested in  the value of this function for small value 
of (!, we shall make the approximation ( 2:rv ) ( :rv ) 

- 2K0 y. e � 21n 
y

v e 

This will be good up to distances such that 

yv 
(! ....., _ 

nv 

and for fJ greater than this value, we take K0 to be zero . Thus we set 

2e 2n1!'.cx0 - x.>  a I ( nv ) 
E.1.,, = - e v - n - e 

v oe yv 

2e 2nt!'.cx0 -x.) 1 
= - e v -

v f2 
yv yv 

for e up to � - and EJ.v = 0 for e ;?;: - . 
nv nv 

(26 .2) 

If Jv denotes the amount of energy per frequency range, per area, when 
a particle passes by at a distance (!, then 

J,,(e) dv = 2 _:_ 1£.L" l 2  dv 
4n 

The factor 2 comes from the fact that in Jv , v i s  considered to  take only 
positive values, while in E.L" it took both positive and negative values. 
Putting in the value forE.LV , we obtain 
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Since our analysis holds only when v ,.., c, we shall replace v by c. The 
total energy in frequency v is 

Rv dv = 2n dv J Jle) e de 

= 4 � ln keo 
c d 

(26 .3) 

We have taken the limits of the integration as d and keo ,  where eo = £ d 
2nv 

is either the size of the bombarding or the bombarded system, whichever 
is larger, and k is  a factor of order unity. Since these values are not known 
exactly, they bring in an uncertainty which limits the accuracy of our 
calculation. However since these quantities appear as the argument of a 
logarithmic function, the result i s  rather insensitive to the error in them. 

We can write 

where N,, is the number of quanta of frequency v in the field of one particle .  
Thus 2e2 I ky). 

N,, dv = -- - ln -- dv 
;r,lzc v 2nd (26 .4) 

since A = c/v. For most problems, Nv is of the order of a per cent . Thi s  
means that about a hundred particles are required to give the same effect 
as a pulse of l ight with one quantum in each frequency range, up to a 
certain maximum, 'J'max . 

We will now give applications of the formula (26.4) to some specific 
problems : 

I )  Photodisintegration of nuclei. The cross section for disintegration of 
a bery11ium nucleus by y-rays is zero for y-ray energies up to about [ l . 5  Me V 
and above this it is about 3 x 10- 2 8  cm2 •  For electrons with 2 MeV] 
energy we have 

y � 5 , 
Therefore 

d � lz/mc � 1 0- 1 0  cm 

I 
N ,.., __ 

v l OOv 
vMeV 

N 
,...., _I_ I dv 

1 00 v 
1 , S MeV 
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and 
<1e 1ectron ,..., I0- 30 cm2 

A closer estimate may be obtained if aphoton is known as a function of v. 
Then E/h 

O'e l e c t ron = I a;hotondv NV 
v o 

Actually, a�hoton has the following general shape 

v 
CT photon  

2) Bremsstrahlung from very high energy electrons. This i s  the calculation 
of the cross-section for radiation by an electron accelerated in the field 
of a nucleus of charge Ze . The straightforward calculation is very difficult 
if the electron has high energy, and we resort to a trick . We make a Lorentz 
transformation to a system in which the electron is at rest .  Then the nucleus 
goes by the electron at a high velocity, and to the electron, the field of the 
nucleus wil l  appear as a highly contracted electromagnetic wave pulse. 
This wave will be scattered by the electron, and the electron will suffer a 
compton recoil. If we transform back to the system in which the nucleus 
is at rest,  the recoil of the electron becomes its deflection ,  and the scattered 
pulse becomes the Bremsstrahlung. 

Let v0 be the frequency of a virtual quantum, and v the frequency of 
the corresponding scattered quantum. v i s  a function of v0 and the angle of 
scattering fJ .  vr ' the frequency of the radiated quantum, i s  the Lorentz 
transform of v .  If we let 

f = hv0 
mc2 

] =  hv 

mc2 

y = 1 - cos 0 
x = cos (} 
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then the formula of the Compton effect i s  

I I - = - + y  
J f 

The cross section for scattering of photons by free electrons is given by the 
Klein-Nishina formula 

da = n dx -- l + x + ---
e4 I { 2 

f2y2 } 
m2c4 ( 1  + fy)2 1 + fy 

It is uncertain as to what value should be taken for d, but it turns out that 
the correct value is the Compton wave length '1/mc. 

EXERCISE 30 Assuming y � 1 ,  calculate the cross sect ion for Bremsstrahlun g by this 
method, and show that it gives the Bethe-Reitler formula 

where 

4e2 Z2e4 2y(1 - s) { 4 l s } da = - -- ln ---- s + -3 -s ds he m2c4 s 

hi•r 
s = -­ymc2 

3) Pair formation by y-rays in a nuclea1 field. As a consequency of Dirac's  
electron theory, an electron-positron pair can be produced when two 
quanta of radiation collide. The cross section for pair formation when the 
two photons have just enough energy to create a pair is 

Using the method of virtual quanta, we can find the cross section for pair 
formation when a very high energy y-ray passes near a nucleus .  We trans­
form to a Lorentz frame in which the frequency of the y-ray is v = mc2 /h . 
The nucleus is then travel ing with velocity v ,...., c, and its field will contain 
virtual quanta of frequency v = mc2 /h . The interaction between the 11-ray 
and the virtual quanta will resul t  in pair production. It is found by this 
method that the probability of making pairs by a single y-ray of energy 
about 1 09 e .v .  in the field of a nucleus is a few per cent of that by two 
y-rays of energy - mc2 • 
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27 APPLICATION TO THE THEORY OF THE CERENKOV EFFECT 

We saw in the last section (26. 1 )  that the Fourier component of the trans­
verse electric field of a charged particle moving along the x-axis has the 
factor 

2ni � X  
e v 

Thus it is equivalent to a wave motion with propagation vector 

Hence 

v v kx = - > -
V C 

y2 
k2 = k2 + k2 + k2 > -x )' z 2 c 

For an electromagnetic field in free space , k2 = v2 / c2 , and this i s  the 
reason no matter how large the energy, a particle moving uniformly in 
free space cannot radiate. The field has too much momentum for its energy. 
However, in a dielectric the propagation vector of an electromagnetic 
wave satisfies the relation 

v2n2 k2 = -- , n = index of refraction 
c2 

and this relation can be satisfied by high energy electrons. The radiation -
from them has been observed by Cerenkov. 

Let us consider an electron moving along the x-axis with veloc ity v. 
Then the current j i s parallel to v and is given by the relation 

jx = � o(x - vt) o(y) o(z) (27. 1 ) 
c 

In section 7 we derived the expression (7. 1 1 ) for the total radiation emitted 
in frequency range dv and in solid angle d!J.. In this formula, v is the circular 
frequency, and, if we write it in terms of the actual frequency, we get 

dQ, dv = dv d!I. 2:'2 JJJ dr dt [j x n] e -»• (·• - ; • · •) 2 (27 . 2) 

The formula for the case where the system is immersed in a dielectric of 
refractive index n i s  obtained by replacing c by c/n in the two places where 
c occurs in the above formula. This follows from the fact that the wave 
equation satisfied by E and H in a medium with dielectric constant c and 
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permeability 1 ,  is  !.._ a2E _ L1E = 4n oh 
c2 ot2 c ot 

so that the velocity of the propagation is c;J; instead of c ,  and from the 

definition of n, this equals c/n . This justifies the substitution of c/n for c in 
the exponential . Further, in the equation 

1 oH - - + V x E = O  
c at 

the differentiation with respect to the space coordinates brings down a 
factor n/c instead of 1 /c so that 

IHI = n lEI 
N ow the Poynting vector 

c 
S = - E x H 

4n 
i s  the same in a dielectric as in free space since the tangential components 

of E and H are conti
.
nuous at the boundary of a dielectric, and the normal 

flow of energy at the boundary must be continuous .  This means that n 
must occur as a factor in (27 .2), and so we replace c by c/n there. 

Let us specify the direction of the radiation by the angles cp, e, with 
respect to the x-axis.  Then if l\ = cos (),  we have 

dQvdv = dvd<pdcx 2n;2n ff drdt[j x n] e- 2:ii (vt - 7r · n) 2 

and using (27. 1) ,  we get 

where 

2nv2n e2v2 
dQ,,dv = dvd<pdcx -- (1  - LX2) 1 1 1 2  

c c2 

I = J J J J dxdydzdt o(x - vt) o(y) o(z) e - 2:-it (•·t - "; xa:) 

The y and z integrations can be carried out immediately t o  give 

Then the x integration gives 

I =  dte c f - 2nlvt ( 1 - � a:) 
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If we take the integral over t from - oo to oo ,  we would get 1 ( nv ) l = -; 6  1 - � lX 

and if this value is substituted in dQv and the total radiation calculated, 
we would get an infinite value. This is to be expected since it means that 
the electron radiates for an infinite time. Instead we shall take the limits 
of integration to be from -T  to + T where T � 1 /v. Then 

where 

This gives 

and 

T 

I = I dte 
+ ta (<X - �) t  

- T  
nv 

a = 2nv -
c 

2 sin a (lX - ncv ) T 
/ = --------

8 2 2 2 sin2 a (lX - :

v

) T 
dQ,,dv = dvd<pdlX 

ne � nv ( 1  -
lX2) ----'-----c a2 (lX - :v r 

Since aT � l ,  this has a steep, narrow maximum at lX = c/m:, and is 
negligible everywhere else . Hence the radiation will be confined to the cone 
cX = c/nv . 

The total radiation is given by 
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since the integrand is only appreciable at tx = c/nv. Now 

Therefore 

- oo  

sin' a ("' -;,;)r � 

_
r
_
2 I dx sin2 x 

a' ("' _  :v )' 

aT x' 
- oo  

T 
= - n  

a 

Q dv = dv 1 - --l 6n3e2v2nv2 ( c2 ) T 
" 

c3 n2v2 nv 
2nv -

c 

Thus the rate of radiation of energy of frequency v i s  

and the number of quanta of frequency v emitted per unit path length is  

dN,, 
= 

R� 
di vhv 

The number of quanta in the visible region (4 x 1 0 1 4  Hz < v < 1 0 1 5  Hz) 
emitted per unit length by an electron with v/c = 0.95 passing through 
water (n = 1 .3) is  

dN 2n 6 · 1 0 1 4  ( 1 ) di 
= 

1 37 3 . 1 0 1 0  
1 -

(1 .3)2 • (0.95)2 

,...., 400 quanta per cm 
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28 TRANSFORMATION OF ENERGY AND MOMENTUM 

143 

We shall prove that if p i s  the momentum and E the energy of a charged 

particle, then (p, £/c) form a 4 vector, and it will follow from this that 

We shall also show that 

£2 
- c2p2 = invariant 

2 
E = moc 

v11 -
{l2 

m0v p = --:::== 
v11 - fJ2 

where m 0 is the rest mass of the particle .  

We have seen in section 5 that for an electromagnetic field, we have the 
conservation laws 

where 

dW + div S = - c(E · j) dt 
dG + div T = - {eE + j x H} dt 

E2 + n2 W = ----
8n 

c 
S = - E x H 

4n 

1 
G = - E x H 

4nc 

TtJ = - -1- {E1E1 + H1H1 - � btJ(E2 + H2) 
4n 2 

(28 . 1 )  

(28 .2) 

It seems that (28 . 1 )  and (28 .2) should be expressible in covariant form, 
and we shall try to do this .  We want to write the equations in terms of the 

quantities 

Let 

jµ = (j, e) 
Fw = (E, H) 

ft = eE1 + [j x H] i 



144 

and consider 

We have 
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/1 = Hzjy - Hyjz + Ex(} = fx 
/2 = - Hzix + Hxiz + £,(} = h 
/3 = H,jx - Hxjy + Ez(} = fz 
/4 = -Exix - £,jy - Ezjz = - E • j 

Next consider the equation 

We have 

and hence 

Similarly 

whence 

Finally, 

4nTµ = pwx F - _!.. bµ F<X{J F V V<X 4 V IX{J 

4 T4 p41p p42p p43p 1 F°'flp n 4 = 41 + 42 + 43 - - � 
4 

- -E2 - £2 - E2 - .!. cn2 - E2) x y 
:: 2 

£2 + n2 

2 

T! = - W  

= [E x H]x 
4 1 T1 = - Sx = cGX 

c 

= n; + n; - E; _ _!.. cn 2 - £ 2) 
2 

I = - { - £2 + E2 + E! - H2 + H2 + H2} 
2 

x y - x y % 

(28 .3) 

(28 .4) 
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which gives 

and 

which gives 

etc. If the other components are calculated in a similar manner, we find 

I ' --+ 

4:rT 1� = t{E2 + H2) - E; - n; 
- EyEz - HyBz 

- E�Ez - HyHz - EzHx + ExHz 
1(£2 + H2) - E; - n; - E:Py+EyBx 
ExH1- EyB" - !(E2 + H2) 

(28 .5) 

It can also be written in the form 

v -

µ i  Txx Txy Tzx - cGx 

Tµ = Txy Tyy Tn - cGy 
� 

T::x Tyz Tzz - cGz 
cGx cGy cGz - W  

T� is  traceless since 

Hence for an isotropic distribution of radiation, 

T �  = Ti = r; = - _l_ T! 
3 

(28 .6) 
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It is now easy to see that the equation 

oµ T� = -/,, 

is the covariant expression of (28 . 1 )  and (28 .2). For v = I we have 

and for v = 4, 

3 o oG1 
I - Tu + -- = -!1 ax1 at 

- _.!__ v · s -
a w 

= E · i c c a1 

Thus (28 . 7) is the covariant form of the conservation equations . 

(28 .7) 

Let us suppose that we have some electromagnetic radiation in a finite 
region of space so that E and ff exist in this region but are zero everywhere 
else. Then the integrals 

cp, = J r: dr 

exist. We shall show that (p, E/c) = Pµ is a covariant 4-vector if there are 
no charges in the region where the fields are not zero . 

The proof is as follows : We have 

aµr: = o 
everywhere, and 

r: = o 
on the boundary of the region under consideration. Let Aµ be a vector 
such that 

everywhere and 

on the boundary. Applying Gauss's theorem to the 4-dimensional diver­
gence of a 4-vector, we obtain from 

that ff f Anormal dS = 0 
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where S is the 3-dimensional surface in the 4-dimensional volume. Let us  

choose this volume to be  a cylinder parallel to the  x4 axis.  Then the base is  

the 3-dimensional volume in ordinary space. The cylinder is  to be bounded 

by a section x4 = constant and by another section x4 = constant, where 

x4' denotes the time measured by an observer on a coordinate system 

moving with respect to the original system. The normal components are 

- A4 and (A4)' on these surfaces,  and zero on the walls of the cylinder. 

H ence we have 

- J JJ A4 dx1 dx2 dx3 + J J J (A4)'  (dx1) '  (dx2)' (dx3)' = 0 

That is  J J J A4 dx1 dx2 dx3 = invariant 

Now if we let 

where b" is an arbitrary, constant vector, we see that the conditions on Aµ 
are satisfied, and hence 

b" J J J r: dr = invariant 

and since b" is arbitrary, we may conclude that 

form a 4-vector .  
Let w and 3 denote the momentum and energy densities of a charged 

body. We know that at low velocities, they satisfy the following equations 

dw = f 
dt 

d3 - = f · v 
dt 

We shall generalize the meanings of w and 3 so that these equations hold 

for all velocities. Let us integrate these equations over the whole body. 
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Then 
dp = f r dr = :ffe" 
dt 

- = (f · v) dr dE I dt 

where p and E are the total momentum and energy of the body. Now 

dr = dr0 J1 - {P = � dro 

d d 
y - = -dt ds 

y 

where dr0 is the proper volume element and s i s  the proper time. Proper 
quantities are quantities measured in the co-moving system, and hence are 
invariants. Thus 

dp = f f dr0 = F 
ds 

- = (f · v) dr0 dE I ds 

We have seen that f and - (E · j) together form a covariant 4 vector, and 
smce 

we see that 

(E · j) = � (f · v) c 

dp 
and � dE 

ds c ds 

form a contravariant 4-vector Fµ. This means that, with a proper choice 
of energy zero point, p and E/c vary contravariantly, and we can write 

as a contravariant 4-vector. 

We have introduced 3 different forces and we shall summarize their 
properties : 
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1 )  fµ = (f, E · j) ,  where f is the force density, i s  a contravariant 4-vector 

and equals the time rate of change of momentum density for µ = 1 , 2 ,  3 

and 1 /c times the time rate of change of the energy density for µ = 4.  

2) Fµ = JP' dr0 ,  where dr0 i s  an element of proper volume, is  a con­

tra variant 4-vector which equals the proper time rate of change of momen­

tum for µ = 1 ,  2,  3 and 1 /c times the proper time rate of change of energy 

for /t = 4 . 

3) ffe = -J 1 - {PF is the actual force and equals the time rate of change 

of momentum. It is not a part of a 4-vector. 

From the fact that p and E/c form a contravariant 4-vector it  follows 

that 

p µPµ = invariant 

Now suppose we transform to a system such that p changes by Llp.  Then 

It follows from the Hamiltonian theory of dynamics that 

a relation which is also necessary for the wave-mechanical interpretation 

of matter. Therefore 

E 
P1 = 2 Vi 

c 
Now we know that for v/c small 

Hence 

and 
E2 2 2 - - p = m0c 
c2 

(28 . 8) 
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Since the quantity in the final equation is an invariant we may now generalize 

to arbitrary velocities : 

E2 E2 2 2 2 
- - - v = m0c 
c2 c4 

m c2 
E = 

o 
= ymoc2 

Ji - v2 /c2 
(28 .9) 

(28 . 1 0) 

Thus if e is the total charge of the particle, the equations of motion are 

_!!_ (m0yv) = e {E + !_ v x H} dt c 
(28 . 1 1 )  

(28 . 1 2) 

EXERCISE 3 1  In section 6 we found the rate of radiation from a charge in the proper 

reference frame. That is · 

dE0 2 e2 . 2  
-- = - - Vo dt0 3 c3 

From the transformation properties of E and t, we see that dE,!dt is an invariant . Hence dE 2 e2 • 2  
- = - - Vo dt 3 c3 

Calculate v� in terms of the variables of the moving system, and show the rate of radiation 

from a moving charge calculated in this way agrees with ( 1 3 . 1 ) .  

For a particle in a uniform magnetic field, y is constant and 

e 
v = -- v x H  

Thus for a plane motion, the trajectory is  a circle of radius e where 

1 eH 
- - ---

e moycv 

This relation may also be expressed in the useful form 

cp 
He = ­

e 
(28 . 1 3) 
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The transformation formulae fo r  the mass and momentum o f  a particle 

can also be obtained from purely kinematical reasoning. We consider the 

collision of two particles, and demand that in the collision, both energy 

and momentum be conserved for an observer in any system. The required 

result can be obtained by considering the simple case of the head-on 

col lision of two perfectly elastic particles with equal rest mass.  Then there 

is one reference system in which the particles have equal and opposite 

velocities, say u and - u before the collision, and after collision separate 

with velocities - u  and u. For an observer moving with velocity - V with 

respect to this system and paral lel to the direction of motions of the particles, 

the initial velocities v 1  and v2 are given by 

l' 1 -
u + v 

1 u V 
+ ­

c2 

- u  + v 

u V  
1 

c2 

In the first reference frame, there i s  some instant during the collision 

when the two particles are in contact and are at rest . Hence since the 

effective (or inertial) mass m can depend only on the absolute value of the 

velocity, we have 

2m(u) = M0 

m(u) u + m(u) ( - u) = 0 

In the second reference frame, at some instant the two bodies are together 

and have a common velocity V; hence 

In a sense, we are defining mass by these equations in such a way that i t  

is  conserved. We are considering mass instead of energy as it is  more 

convenient to do so, and we shall show later the connection between mass 
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defined in this way, and energy. We now have 

This equation is satisfied by 

since if we write 

m(v1 )  
1 

u V + -c2 
-- = ----

m(v2) 

I uV 
+ ­

c2 

I _ u V 

c2 

I _ uV 

c2 

and substitute in the equation, we get 

or 

Now 

u(k - k) + V(k + k) = V(k) I + - + I - -( uV uV) 
c2 c2 

2 Vk = 2 Vk 

vi ( V + u)2 1 - - = I - ------
c' 

c' (' + :�r 
v2u2 

c2 + 2 Vu + - V 2 - 2 Vu - u2 
c2 - --------------
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J
(I _ u

2 )( 1 _ �) 
I + Vu 

= c2 c 2 
c'  ( 1 <:) 

By changing the sign of V, we interchange v1 and v 2 ,  and hence 

Therefore 

J
(I _ u2 ) ( i _ v; ) 

1 _ 
Vu = c2 c 2 
c' ( 1 - ::) 

JI -
v; 
c 2 

Since this must hold for all u and V, we have 

m(O) m(v) = = ym(O) J v2 
l - -

c 2 
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This functional dependence of mass on velocity was first verified ex-

.-.- -

H - -......__ x ( in) 
' 

" 
P l ate 

perimentally by Bucherer . A combination of a uniform electric field E and 

magnetic field H, which are perpendicular to each other and to the direction 

of motion of the electrons, selects electrons with a definite velocity v given by 

Hv = E c 
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The momentum of these particles is then found by measuring the deflections in the same magnetic field .  We have from (28 . 1 3) 

and therefore 

eHg = mvc 

eoH2 
nz = -'"'

--
c2E 

The difficulty in the experiment i s  to prevent electrons which are scattered 

at the slits and in the condenser from coming to the plate. 

29 INERTIA AND ENERGY 

Let us now consider the relation between mass and energy. By mass here 

we mean inertial mass . We shall show that for a consistent description, by 

different observers, of an emission process, we must have 

L1m 
L1E 
c 2 

The question whether we can write 

E 
m = ­

c 2 

(29 . l ) 

depends on whether we can convert the whole mass of a system into some 

form of energy. 

Consider some emission process, say the radiation from a hot body , or  

the fl emission from a radioactive nucleus . We shall assume isotropic 
radiation in the rest system . Then 

op = 0 

If the process is observed from a moving system, we have 

oE' = y(l>E + v l>p) = y l>E 

l>p' = y op + � y l>E = + __!!___ l>E' 
c c 2 

The change in p'  means a change either in m or v, but since v is constant, 

m must change. 

and hence 

" , "( , ) " , bE' up = u m v = v um = v --

c 2 

l>m' = 
bE' 
c2 (29. l )  
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I t  must be pointed out here that the mass considered above is inertial 

mass, and the mass usually measured is gravitational mass. However, the 

Eotvos experiment has shown that these two masses are equivalent  to a 

very high degree of precision. 

The relation (29 . 1 )  between energy and mass has been checked experi­

mentally in several cases .  We know that positrons have the same rest mass 

as  electrons and at low velocities the former combine with electrons to 

form y-rays .  The energy of the y-rays have been measured and shown to 

agree with the value predicted by the theory 

to about one per cent . There i s  no factor of 2 since two part icles of mass m0 
give r i se to  two quanta of this energy . This is  necessary in  order that 

momentum be conserved . We note that in this process the whole mass is 

converted to radiation energy . The inverse process does not give a good 

check since the curve giving the relation between the y-ray energy and the 

number of particles produced does not have a sharp threshold at the 

minimum energy required for pair production. 

The reaction ( 2 He (8 MeV) 
Li7  + H 1 -+ 

y ( 1 7 .6  MeV) + 2 He ( 1 00 KeV) 

has given quite an accurate check of (29. 1 ) .  

3 0  CONSIDERATIONS IMPORTANT FOR THE QUANTUM THEORY 
In this section we shall give a few considerations to show how the classical 

electromagnetic theory developed in this course has to be modified when 

quantum mechanical effects are considered . 

I We have seen in section 1 8  that if H(p, x) i s  the Hamil tonian function 

for a particle with charge e when there is no external field acting on it,  
then its expression when there is  a field i s  given by 

H' = eff + H ( p - ; L1 , x) 
so  that . e A p = mx + -

c 
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and we have also 
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..!!.._ (mi) = §" dt 
where §" is the Lorentz force. From relativistic considerations, we have 
from (28 . 8) 

Also 

E = H = c .J m�c2 _ p2 

x 
= 

--;::c=(=p==:=A=)==-

J 2 2 m�v2 m0c + _ ____:_ __ v2 

. e A p = m0yx + -c 

1 c2 

d ( . ) or - m0yx = � dt 
Now since p, E/c and A, <p both form contravariant 4-vectors, any linear 

combination of them also forms one, and hence 

c ' (p - : A)' - CE - eqi)' = invariant 
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We find the value of this invariant by setting £ = H' and using the expression 

for H' above. This gives 

c2 (p - : A )1 - (E - eg;)2 = - m�c4 

Now this equation has not only the solution 

E = H' = e<p + c Jm�c' + (p - : A)' 

but also the solution 

E = H" = e<p - c J m�c2 + (p - : A)' 

and this Hamiltonian gives the same equation of motion as H' if the signs 

of e and p are changed . Thus H" corresponds to the Hamiltonian of a 

particle with the opposite charge and negative mass.  In  classical physics 

we can say that this does not correspond to any reality and throw this 

solution away ; in quantum mechanics, however, it is  connected with the 

theory of the positron . These anomalous solutions (H") are the classical 

origin of the phenomenon of pair production. 

II The oscillations of a plane wave are given by the factor 

e2nl(k . r - vt) 

Since the phase must be independent of the motion of the observer, we 

have 
k · r - vt = invariant 

and since r, ct form a contravariant 4-vector, k, v/c must also form a 
contravariant 4-vector. Thus 

E v 
- = const x -
c c p = const xk 

are covariant relations. DeBroglie wrote 

E = hv, p = hk 

According to the quantum theory any system with well-defined E and p 
has connected wi th i t  well-defined values of v and k. This means that in 
making a Lorentz transformation, we get the same result whether we use 

the Doppler effect for v or the transformation formula for E. 
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III We know from section 3 that any radiation field may be expanded 

in terms of plane waves.  Planck showed that plane waves can only be 

excited with integral multiples of a discrete energy. Thus 

Ek. v = Nhv 

where N is an integral number. Moreover Compton showed that plane 

waves have momentum 

Pk. v = Nhk 

The energy Ek in the k1h Fourier component of a field oscillator is given by 

and if Ak is this component of the vector potential , then since 

H = V x A  

we have 

Let us compare this expression with the corresponding expression for a 

mechanical oscillator of unit mass 

We can make the following correspondence 

Ek - P  

Ak - q  

2:rk - w  

For the mechanical oscillator, no quantum mechanical effects are observed 

when it is highly excited . Thus in any phenomenon where a large number 

of quanta of radiation are present, we expect classical theory to hold . 

Roughly , this means that classical electromagnetic theory holds for low 

frequencies .  

Let us see how the classical theory breaks down. In the quantum theory , 
we have the complementary relation between position and momentum of a 
particle 
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For a well defined p, q is  spread out, and for well defined q,  p is spread out .  

Making the correspondences, w e  have the complementarity 

.dEk .dAk � lzc 

where the factor c comes in from the consideration of units . Since Ak 
gives rise to a magnetic field  Hk 1- to Ek , this expresses a complementarity 

between E and the component of H perpendicular to it. Also, if the energy E 

of a harmonic oscil lator is fixed, p and q fluctuate. Similarly, if Ehv i s  

fixed, E and H fluctuate. 

In classical theory, i t  i s  assumed that E and H can be measured with 

arbitrary precision . This is  not possible in quantum theory. In the actual 

measurement of E, we have to take a certain volume and take a certain 

interval of time T and take the average. Thus 

E = :T f f dr dt E(r, t) 

V T 

One method i s  to take a charged body and measure its momentum at the 

beginning and at the end of the time interval T. Then 

p(T) - p(O) = e VET 

In order that the body stay near one position, we must take the mass large, 

and i n  order that its own field not modify the external field which we want 

to mea sure, we must take e very smal l .  In classical theory these conditions 

can be fulfilled, and we can make the test bodies so feeble that we can 

measure E and H at neighboring points without disturbing each other. In 
quantum theory, however, this is not possible since each momentum 

measurement brings in an uncertainty in the position such that 

op � lz/ox 

e v oET � lz/ox 
Thus 

VT oE l>x � file 
and for V, T, bE, bx to be small ,  e must be large . In fact, if the measurement 

is to have any meaning, we must have 

l>x � yt /3 

If e i s  made large, then the self-field of the test body alters the external 

field.  However, we can compensate this effect by having a similar body 

charged with equal and opposite charge, and fixed in space at the place 
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where the field is being measured . Since there is an uncertainty ox in the 

position of the test body, its field will  not be entirely cancelled out, but 

there will be a dipole moment proportional to ox.  Since ox i s  unknown 

the force on the test body which is proportional to ox is also  unknown. 

However, the constant of proportionality can be calculated, and if the test 

body is attached to the compensating body by a spring with an elastic 

constant equal to this value, then the uncertainty in position will give no 

net force on the test body, and the field can be measured to arbitrary 

precision by using a high enough charge density. 

The dipole moment disturbs the value of H nearby, and so gives com­

plementarity between E and H. Now a current in  the x direction only 

gives a magnetic field in the yz plane ; thus the complementarity is between 

the perpendicular components of E and H. The parallel components are 
not complementary. It can also be shown that two measurements of the 

field do not disturb each other if the one l ies in the " absolute elsewhere " 

(Minkowski diagram) of the other. This is  to be expected since then no 

electromagnetic disturbance which originates at the position and time of 

the measurement can r.each the place of the other measurement at the time 

when this measurement is being made. Another result which can be proved 

is that if there are a large number of quanta such that 

then the fields due to these quanta of radiation can be measured to a 

small fraction of their values. 

As an illustration of the complementarity between E and energy, let u s  
consider the photoelectric effect . It  i s  found that no matter how low the 

intensiv of the radiation, the electrons are always ejected with energy 

Ee = hv - I 
where I i s  the binding force of the electron to the atom . This ejection i s  

due to  the force eE 
and we would expect classically that since E decreases with decreasing 

intensity, we will get a smaller value of Ee .  However, due to complemen­

tarity, if the energy of the radiation is  wel l defined , the field fluctuates 

violently, and though it  takes on large values less frequently for lower 

intensit ies, the energy with which the electrons come out is the same, 

though their number is proportional to the intensity . 
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